Back to Search Start Over

Eigenvalues of the Neumann-Poincaré operator of 2 inclusions with contact of order m : a numerical study

Authors :
Bonnetier, Eric
Tsou, Chun-Hsiang
Triki, Faouzi
Institut Fourier (IF )
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Equations aux Dérivées Partielles (EDP )
Laboratoire Jean Kuntzmann (LJK )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
ANR-11-LABX-0025,PERSYVAL-lab,Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011)
Institut Fourier (IF)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Equations aux Dérivées Partielles (EDP)
Laboratoire Jean Kuntzmann (LJK)
Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
ANR-11-LABX-0025-01,PERSYVAL-lab,Systèmes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011)
Source :
Journal of Computational Mathematics-International Edition, Journal of Computational Mathematics-International Edition-, Global Science Press, 2018, 36 (1), pp.17-28. ⟨10.4208/jcm.1607-m2016-0543⟩, Journal of Computational Mathematics-International Edition-, 2018, 36 (1), pp.17-28. ⟨10.4208/jcm.1607-m2016-0543⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; In a composite medium that contains close-to-touching conducting inclusions, the pointwise values of the gradient of the voltage potential may blow up as the distance δ between some inclusions tends to 0 and as the conductivity contrast degenerates. In a recent paper [10], we showed that the blow-up rate of the gradient is related to how the eigenvalues of the associated Neumann-Poincaré operator converge to ±1/2 as δ to 0, and on the regularity of the contact. Here, we consider two connected 2-D inclusions, at a distance δ > 0 from each other. When δ = 0, the contact beteween the inclusions is of order m ≥ 2. We numerically determine the asymptotic behavior of the eigenvalues to the Neumann-Poincaré operator, in terms of δ and m, and we check that we recover the estimates obtained in [10].

Details

Language :
English
ISSN :
02549409 and 19917139
Database :
OpenAIRE
Journal :
Journal of Computational Mathematics-International Edition, Journal of Computational Mathematics-International Edition-, Global Science Press, 2018, 36 (1), pp.17-28. ⟨10.4208/jcm.1607-m2016-0543⟩, Journal of Computational Mathematics-International Edition-, 2018, 36 (1), pp.17-28. ⟨10.4208/jcm.1607-m2016-0543⟩
Accession number :
edsair.dedup.wf.001..f478b406e508c7b75b5aac769d2727df
Full Text :
https://doi.org/10.4208/jcm.1607-m2016-0543⟩