Back to Search Start Over

Optimal privacy protection of mobility data: a predictive approach

Authors :
Molina, Emilio
Fiacchini, Mirko
Cerf, Sophie
Robu, Bogdan
GIPSA - Modelling and Optimal Decision for Uncertain Systems (GIPSA-MODUS)
GIPSA Pôle Automatique et Diagnostic (GIPSA-PAD)
Grenoble Images Parole Signal Automatique (GIPSA-lab)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab)
Université Grenoble Alpes (UGA)
Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Self-adaptation for distributed services and large software systems (SPIRALS)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Source :
IFAC WC 2023-22nd IFAC World Congress, IFAC WC 2023-22nd IFAC World Congress, Jul 2023, Yokohama, Japan, 22nd IFAC World Congress 2023, 22nd IFAC World Congress 2023, Jul 2023, Yokohama, Japan
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

International audience; Location data are extensively used to provide geo-personalized contents to mobile devices users.Sharing such personal data is a major threat to privacy, with risks of re-identification or inference of sensitive information. Location data broadcasted to services can be sanitized, i.e., by adding noise to spatial coordinates.Such protection mechanisms from the literature are widely generic, e.g., not specific to a user and mobility properties. In this work, we advocate that taking into account the specificities of location data (temporal correlation, human mobility patterns, etc.) enables to gain in the privacy-utility trade-off.Specifically, using future mobility prediction greatly improves privacy. We present a novel protection mechanism, based on model predictive control (MPC). The sanitized location is optimally computed so that it maximizes privacy while guaranteeing a utility loss constraint, for present and future locations. Our formulation explicitly takes into account non-constant sampling time, due to moments when no location data is broadcasted.We evaluate experimentally our control on real mobility dataset and compare to the state of the art.Results show that with knowledge of user's future mobility over a few of minutes, we can gain up to 10% of privacy compared to state of the art, while preserving data utility.

Details

Language :
English
Database :
OpenAIRE
Journal :
IFAC WC 2023-22nd IFAC World Congress, IFAC WC 2023-22nd IFAC World Congress, Jul 2023, Yokohama, Japan, 22nd IFAC World Congress 2023, 22nd IFAC World Congress 2023, Jul 2023, Yokohama, Japan
Accession number :
edsair.dedup.wf.001..f3fe1cbb409776722081661af14f7e81