Back to Search Start Over

Sélection de variables pour l'apprentissage simultanée de tâches

Authors :
Flamary, Rémi
Rakotomamonjy, Alain
Gasso, Gilles
Canu, Stephane
Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS)
Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie)
Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN)
Normandie Université (NU)-Université Le Havre Normandie (ULH)
Normandie Université (NU)
Flamary, Rémi
Source :
11e Conférence d'Apprentissage, Confrénce D'Apprentissage (CAp), Confrénce D'Apprentissage (CAp), May 2009, Hammamet, France. pp.109-120
Publication Year :
2009
Publisher :
HAL CCSD, 2009.

Abstract

National audience; Recently, there has been a lot of interest around multi-task learning (MTL) problem with the constraints that tasks should share common features. Such a problem can be addressed through a regularization framework where the regularizer induces a joint-sparsity pattern between task decision functions. We follow this principled framework but instead we focus on lp − l2 (with p ≤ 1) mixed-norms as sparsity-inducing penalties. After having shown that the l1 − l2 MTL problem is a general case of Multiple Kernel Learning (MKL), we adapted the available efficient tools of solving MKL to the sparse MTL problem. Then, for the more general case when p < 1, the use of a DC program provides an iterative scheme solving at each iteration a weighted 1 − 2 sparse MTL problem.

Details

Language :
English
Database :
OpenAIRE
Journal :
11e Conférence d'Apprentissage, Confrénce D'Apprentissage (CAp), Confrénce D'Apprentissage (CAp), May 2009, Hammamet, France. pp.109-120
Accession number :
edsair.dedup.wf.001..ed2bc4f46f059edbcc5498101e376c69