Back to Search
Start Over
Sélection de variables pour l'apprentissage simultanée de tâches
- Source :
- 11e Conférence d'Apprentissage, Confrénce D'Apprentissage (CAp), Confrénce D'Apprentissage (CAp), May 2009, Hammamet, France. pp.109-120
- Publication Year :
- 2009
- Publisher :
- HAL CCSD, 2009.
-
Abstract
- National audience; Recently, there has been a lot of interest around multi-task learning (MTL) problem with the constraints that tasks should share common features. Such a problem can be addressed through a regularization framework where the regularizer induces a joint-sparsity pattern between task decision functions. We follow this principled framework but instead we focus on lp − l2 (with p ≤ 1) mixed-norms as sparsity-inducing penalties. After having shown that the l1 − l2 MTL problem is a general case of Multiple Kernel Learning (MKL), we adapted the available efficient tools of solving MKL to the sparse MTL problem. Then, for the more general case when p < 1, the use of a DC program provides an iterative scheme solving at each iteration a weighted 1 − 2 sparse MTL problem.
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- 11e Conférence d'Apprentissage, Confrénce D'Apprentissage (CAp), Confrénce D'Apprentissage (CAp), May 2009, Hammamet, France. pp.109-120
- Accession number :
- edsair.dedup.wf.001..ed2bc4f46f059edbcc5498101e376c69