Back to Search Start Over

Summations over generalized ribbon Feynman diagrams and all genus Gromov-Witten invariants

Authors :
Barannikov, Serguei
Université Paris Diderot - Paris 7 (UPD7)
Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC)
Barannikov, S.
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

The construction of cohomology classes of compactified moduli spaces of curves from asymptotic expansions of EA matrix integrals, described in the works of speaker, is presented. The construction defines a cohomological field theory, which conjecturally coincides with the all genus Gromov-Witten invariants of the mirror manifold. The construction is based on the speaker’s theorem identifying the cell complex of the compactified moduli space of curves with the Feynman transform of the operad of permutation group algebras. As a simple application a new formula for generating function for products of psi classes in the total cohomology of the compactified moduli spaces of curves is described. Relevant papers: arxiv:1803.11549 / HAL-00429963 (2009), arxiv:0912.5484 / hal-00102085(2006)

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.dedup.wf.001..ead7a1c0fed3a2a8d79a541b5b46552e