Back to Search Start Over

Self-assembled growth of catalyst-free GaN wires by metal-organic vapour phase epitaxy

Authors :
Köster, Robert
Nanophysique et Semiconducteurs (NPSC)
PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS)
Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Université Joseph-Fourier - Grenoble I
Joël Eymery
Köster, Robert
Source :
Physics [physics]. Université Joseph-Fourier-Grenoble I, 2010. English, Physics [physics]. Université Joseph-Fourier-Grenoble I, 2010. English. ⟨NNT : ⟩
Publication Year :
2010
Publisher :
HAL CCSD, 2010.

Abstract

A new catalyst-free method has been developed to grow self-assembled GaN wires on c-plane sapphire substrates by metal-organic vapour phase epitaxy. This approach, based on in situ deposition of thin SiNx layer (~2 nm), enables epitaxial growth of c-oriented wires with 200-1500 nm diameters and a large length/diameter ratio (>100) on c-plane sapphire substrate. The detailed study of the growth mechanisms shows that a combination of key parameters is necessary to obtain vertical growth. In particular, the duration of SiNx deposition prior to the wire growth is critical for controlling the epitaxy with the substrate. The GaN seed nucleation time determines the mean-size diameter and structural quality and a high Si-dopant concentration promotes the vertical growth. Such GaN wires exhibit UV-light emission centered at about 350 nm and a weak yellow band (~550 nm) at low temperature. This approach may be viewed as a fast and reproducible technique to grow GaN wires by MOVPE. Compared to other techniques, it allows studying quite systematically the influence of the growth parameters without being dependent on time consuming ex situ surface preparations like surface patterning used in selective area growth (SAG). The growth of heterostructures, as longitudinal n-u and n-p wires (using Si and Mg dopants) as well as a core-shell InGaN/GaN MQW using the wires as templates has been demonstrated. The growth occurs on the non-polar m-plane facets of the wire and not on c-plane as it is the case on 2D materials with the same sapphire substrate. It gives different piezoelectric contributions to the wires optical properties, which have been studied by cathodo- and photo-luminescence. The fundamental building blocks of wire-based blue LED were demonstrated during this thesis. The realisation of an efficient device still requires a deeper understanding and optimization of the parameters controlling the material growth and an optimization of the electrical contacts.<br />Une méthode originale de croissance non catalysée a été développée pour faire croître des fils auto-assemblés de GaN sur des substrats de saphir par épitaxie en phase gazeuse d'organo-métalliques (MOVPE). Cette approche, basée sur le dépôt et le perçage, in situ, d'une fine couche de SiNx (~2 nm), permet la croissance épitaxiale de fils orientés le long de l'axe c sur des substrats de saphir. L'étude détaillée des mécanismes de croissances montre qu'une combinaison de paramètres clés est nécessaire pour obtenir la croissance verticale des fils. En particulier, la durée du dépôt de SiNx avant la croissance des fils est critique pour contrôler l'épitaxie avec le substrat. Le temps de nucléation des germes de GaN détermine la taille moyenne et la qualité structurale, enfin une forte concentration de dopant Si permet d'obtenir la croissance verticale. Les fils obtenus ont une émission UV centrée sur environ 350 nm et une faible bande jaune de défaut (~550 nm) à basse température. Cette approche fournit une méthode rapide et reproductible pour faire croître des fils de GaN en MOVPE et a permis d'explorer les paramètres de croissance sans avoir à préparer spécifiquement les surfaces comme c'est le cas dans les croissances sélectives. La croissance d'hétérostructures dopées longitudinales de type n-u et n-p a été démontrée en utilisant des précurseurs de Si et de Mg. De plus les fils ont été utilisés comme gabarits pour faire croître des structures cœur/coquille de puits quantiques InGaN/GaN. Ces structures ont été étudiées par cathodo- et photo-luminescence pour avoir une caractérisation spatiale et spectrale de l'émission lumineuse. Cette croissance se fait notamment sur les plans m non-polaires ce qui modifie les contributions des champs électriques sur l'émission de lumière. Les briques technologiques pour obtenir une diode électroluminescente bleue à base de fils ont donc été démontrées. La réalisation de composants nécessite un contrôle plus poussé de la qualité du matériau et des contacts pour une injection électrique.

Details

Language :
English
Database :
OpenAIRE
Journal :
Physics [physics]. Université Joseph-Fourier-Grenoble I, 2010. English, Physics [physics]. Université Joseph-Fourier-Grenoble I, 2010. English. ⟨NNT : ⟩
Accession number :
edsair.dedup.wf.001..e5858f0c7911897b356a06133a44482e