Back to Search Start Over

SnO 2 films elaborated by radio frequency (RF)magnetron sputtering as a potential TCOs alternative for organic solar cells

Authors :
Belayachi, Wissal
Ferblantier, Gérald
Fix, Thomas
Schmerber, Guy
Rehspringer, Jean-Luc
Heiser, Thomas
Slaoui, Abdelilah
Abd-Lefdil, Mohammed
Dinia, Aziz
Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)
Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE)
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
Université Mohammed V de Rabat [Agdal] (UM5)
Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube)
École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE)
Fix, Thomas
Source :
ACS Applied Energy Materials, ACS Applied Energy Materials, 2022, 5 (1), pp.170-177. ⟨10.1021/acsaem.1c02711⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

International audience; Transparent conducting oxides (TCOs) are crucial component of solar cells. Tin doped indium oxide (ITO) is the most employed TCO, but the scarcity and high price of indium induce a search for lower cost TCOs with equivalent properties as substitute. Tin dioxide (SnO2) films have many advantages, such as rich sources of material, low prices, and non-toxicity. SnO2 films present a high visible light transmittance, near-infrared light reflectivity, and excellent electrical properties. They also have a higher chemical and mechanical stability compared to ITO. The aim of this work is to elaborate SnO2 films by RF-magnetron sputtering in order to use them as electrodes for Organic Solar Cells (OSCs). The SnO2 films were deposited on glass, SiO2 and quartz substrates in a mixed environment of Ar and O2. XRD measurements show that the as-deposited SnO2 films are polycrystalline with cassiterite tetragonal structure. SEM analysis showed that the films are homogeneous, continuous, and nanostructured. The electrical resistivity and average optical transmittance of the samples are about 10 −3 Ω.cm and over 80%, respectively. The estimated optical band gap (Eg) is around 4.0 eV while the work function of the films is around 5.0 eV. The SnO2 films are used as electrodes for inverted OSCs, using poly(3-hexylthiophene-2,5-diyl): [6,6]phenyl-C60-butryric acid methyl ester (P3HT:PC60BM) as active layer. The device's open circuit voltage (VOC) and short circuit current density (JSC) are similar to those obtained for the inverted OSCs employing ITO as the same electrode. Even if the achieved power conversion efficiency is lower compared to the value for the reference OSC with an ITO electrode, these results are promising and place SnO2 TCO as a potential candidate to replace ITO.

Details

Language :
English
ISSN :
25740962
Database :
OpenAIRE
Journal :
ACS Applied Energy Materials, ACS Applied Energy Materials, 2022, 5 (1), pp.170-177. ⟨10.1021/acsaem.1c02711⟩
Accession number :
edsair.dedup.wf.001..e5235997e01682da0d11d58ba0898645
Full Text :
https://doi.org/10.1021/acsaem.1c02711⟩