Back to Search Start Over

Fatigue in Continuous Fibre Reinforced Thermoplastic Composites

Authors :
Pertuz, Alberto
Díaz-Cardona, Sergio
González Estrada, Octavio Andrés
Grupo de Investigación en Energía y Medioambiente [Bucaramanga]] (GIEMA)
Universidad Industrial de Santander [Bucaramanga] (UIS)
Source :
International Journal of Fatigue, International Journal of Fatigue, Elsevier, 2020, 130, pp.105275. ⟨10.1016/j.ijfatigue.2019.105275⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; Additive manufacturing (AM) technologies have been applied with success in many applications, being fused deposition modelling (FDM) the most widely used AM technique for fabricating thermoplastic pieces. The thermoplastic parts made by FDM present lack of strength and low stiffness, as required for fully functional and load-bearing parts. Due to this restriction, a new technology to reinforce with fibres the thermoplastic filaments was developed in the last years. Continuous fibre reinforced thermoplastic composites (CFRTPC) printers are taking this technology to a whole new level in terms of efficient production and mechanical properties. Static mechanical properties, as well as fatigue behaviour, were studied since in these types of loads a wide range of engineering dynamic applications can be envisaged. Tensile tests were performed to characterise the static mechanical properties. Fatigue tests were done to analyse the durability behaviour of the FDM composite materials, and the fracture surface was analysed by SEM microscopy. The results showed that carbon fibre isotropic layers had the higher ultimate tensile stress, with 165 MPa. From fatigue tests, stress vs. number of cycles curves (S vs Nf) in the temporary life zone were obtained. It is observed from the results that specimens with nylon matrix, triangular filling pattern and matrix density of 20%, reinforced with carbon fibre at 0-degrees, showed better

Details

Language :
English
ISSN :
01421123
Database :
OpenAIRE
Journal :
International Journal of Fatigue, International Journal of Fatigue, Elsevier, 2020, 130, pp.105275. ⟨10.1016/j.ijfatigue.2019.105275⟩
Accession number :
edsair.dedup.wf.001..e27550ad4757b8462bd09caf4b8619c8
Full Text :
https://doi.org/10.1016/j.ijfatigue.2019.105275⟩