Back to Search Start Over

In situ SEM Study and Microstructural Evolution of Nano Si anode for Li-ion Technology

Authors :
Hovington, P.
Dontigny, M.
Guerfi, A.
Trottier, J.
Lagacé, M.
Mauger, A.
M. Julien, C.
Zaghib, K.
Energy Storage and Conversion, Research Institute of Hydro-Québec
Energy Storage and Conversion
Institut de minéralogie et de physique des milieux condensés (IMPMC)
Université Pierre et Marie Curie - Paris 6 (UPMC)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Physicochimie des Electrolytes, Colloïdes et Sciences Analytiques (PECSA)
Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal Power Sources, Journal Power Sources, 2014, 248, pp.457-464
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

International audience; In situ and ex situ scanning electron microscopy of nano Si and SiO anode particles was carried out during the first cycles, and at various stages of charge. The particle size effects were explored in the range 0.1-20 μm, providing a new insight into the micro-structural evolution of the particles as a function of their size, and into the 'mechanical' resistance upon important volume change upon phase transformation of these anodes. For small particles, the failure of the battery comes from an electrochemical sintering that compacts the whole electrode, which results in its cracking. The particles keep their integrity when the discharge is stopped at a voltage 0.1V, which corresponds to the chemical composition Li12Si7, while the particles are known to crack at deeper discharge up to Li22Si5. Replacing the Si particles by SiO particles in an attempt to avoid these structural effects did not help, because of the different chemical reactions during cycling, with the loss of oxygen. Upon deeper discharge, the particles of size d

Details

Language :
English
Database :
OpenAIRE
Journal :
Journal Power Sources, Journal Power Sources, 2014, 248, pp.457-464
Accession number :
edsair.dedup.wf.001..e264e062779e90d8031aed79e2bd7e73