Back to Search Start Over

Diversity and seasonal dynamics of airborne archaea

Authors :
Fröhlich-Nowoisky, J
Ruzene Nespoli, C.
Pickersgrill, D.A.
Galand, P.E.
Müller-Germann, I.
Nunes, T.
Gomes Cardoso, J.
Almeida, S.M.
Pio, C.
Andreae, M. O.
Conrad, R.
Pöschl, U.
Després, V. R.
Max Planck Institute for Chemistry (MPIC)
Max-Planck-Gesellschaft
Johannes Gutenberg - Universität Mainz = Johannes Gutenberg University (JGU)
Laboratoire d'Ecogéochimie des environnements benthiques (LECOB)
Observatoire océanologique de Banyuls (OOB)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Universidade de Aveiro
University of Cape Verde
Universidade de Lisboa = University of Lisbon (ULISBOA)
Max Planck Institute for Terrestrial Microbiology
Johannes Gutenberg - Universität Mainz (JGU)
Universidade de Lisboa (ULISBOA)
Source :
Biogeosciences, Biogeosciences, 2014, 11 (21), pp.6067-6079. ⟨10.5194/bg-11-6067-2014⟩, Biogeosciences, European Geosciences Union, 2014, 11 (21), pp.6067-6079. ⟨10.5194/bg-11-6067-2014⟩, Biogeosciences, Vol 11, Iss 21, Pp 6067-6079 (2014), Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

Archaea are widespread and abundant in many terrestrial and aquatic environments, and are thus outside extreme environments, accounting for up to ~10% of the prokaryotes. Compared to bacteria and other microorganisms, however, very little is known about the abundance, diversity, and dispersal of archaea in the atmosphere. By means of DNA analysis and Sanger sequencing targeting the 16S rRNA (435 sequences) and amoA genes in samples of air particulate matter collected over 1 year at a continental sampling site in Germany, we obtained first insights into the seasonal dynamics of airborne archaea. The detected archaea were identified as Thaumarchaeota or Euryarchaeota, with soil Thaumarchaeota (group I.1b) being present in all samples. The normalized species richness of Thaumarchaeota correlated positively with relative humidity and negatively with temperature. This together with an increase in bare agricultural soil surfaces may explain the diversity peaks observed in fall and winter. The detected Euryarchaeota were mainly predicted methanogens with a low relative frequency of occurrence. A slight increase in their frequency during spring may be linked to fertilization processes in the surrounding agricultural fields. Comparison with samples from the Cape Verde islands (72 sequences) and from other coastal and continental sites indicates that the proportions of Euryarchaeota are enhanced in coastal air, which is consistent with their suggested abundance in marine surface waters. We conclude that air transport may play an important role in the dispersal of archaea, including assumed ammonia-oxidizing Thaumarchaeota and methanogens.

Details

Language :
English
ISSN :
17264170 and 17264189
Database :
OpenAIRE
Journal :
Biogeosciences, Biogeosciences, 2014, 11 (21), pp.6067-6079. ⟨10.5194/bg-11-6067-2014⟩, Biogeosciences, European Geosciences Union, 2014, 11 (21), pp.6067-6079. ⟨10.5194/bg-11-6067-2014⟩, Biogeosciences, Vol 11, Iss 21, Pp 6067-6079 (2014), Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP
Accession number :
edsair.dedup.wf.001..df16ccc8f0ee2303f5da7143d1acbd43
Full Text :
https://doi.org/10.5194/bg-11-6067-2014⟩