Back to Search Start Over

Direct effect of ice sheets on terrestrial bicarbonate, sulphate and base cation fluxes during the last glacial cycle: minimal impact on atmospheric CO2 concentrations

Authors :
Martyn Tranter
Philippe Huybrechts
Guy Munhoven
Sharp, M. J.
Brown, G. H.
Jones, I. W.
Hodson, A. J.
Hodgkins, R.
Wadhams, J. L.
Physical Geography
Vrije Universiteit Brussel
Source :
EPIC3Chemical Geology, 190, pp. 33-44, Vrije Universiteit Brussel
Publication Year :
2002

Abstract

Chemical erosion in glacial environments is normally a consequence of chemical weathering reactions dominated bysulphide oxidation linked to carbonate dissolution and the carbonation of carbonates and silicates. Solute fluxes from small valley glaciers are usually a linear function of discharge. Representative glacial solute concentrations can be derived from the linear association of solute flux with discharge. These representative glacial concentrations of the major ions are =25% of those in global river water. A 3-D thermomechanically coupled model of the growth and decay of the Northern Hemisphere ice sheets was used to simulate glacial runoff at 100-year time steps during the last glacial cycle (130 ka to the present). The glacially derived fluxes of major cations, anions and Si over the glaciation were estimated from the product of the glacial runoff and the representative glacial concentration. A second estimate was obtained from the product of the glacial runoff and a realistic upper limit for glacial solute concentrations derived from theoretical considerations. The fluxes over the last glacial cycle are usually less than a few percent of current riverine solute fluxes to the oceans. The glacial fluxes were used to provide input to an oceanic carbon cycling model that also calculates changes in atmospheric CO2 . The potential change in atmospheric CO2 concentrations over the last glacial cycle that arise from perturbations in glacial solute fluxes are insignificant, being

Details

Database :
OpenAIRE
Journal :
EPIC3Chemical Geology, 190, pp. 33-44, Vrije Universiteit Brussel
Accession number :
edsair.dedup.wf.001..dc9f4978ce735a4d61a6d14b3d0a68e0