Back to Search
Start Over
Influence of gas hydrate or ice crystals on the permeability of a porous medium
- Source :
- Energie électrique. Ecole Nationale Supérieure des Mines de Saint-Etienne, 2005. Français
- Publication Year :
- 2005
- Publisher :
- HAL CCSD, 2005.
-
Abstract
- The first part is a bibliographic study. We study the conditions for thermodynamic equilibrium of the hydrates as a bulk medium and the composition of the liquid and solid phases. We then describe the basics of fluid dynamics in a porous medium. Eventually, we merge the two approaches and study the influence of the porous medium on the hydrate stability. An off-shore hydrate field (Blake Ridge) and an on-shore field (Mallik) are precisely described. The latter will be used as a reference case for subsequent numerical simulations. The second part is devoted to the experiments. Their goal is to measure the permeability of a sediment containing crystals. To get closer to natural geologic conditions, crystals are synthesized in absence of free gas. It turns out that hydrates form in a very heterogeneous way in the porous medium, which makes the measurements non representative. We believe that this result has a general character and that, at the laboratory time-scale, it is difficult, to say the least to achieve a uniform distribution of gas hydrates grown from dissolved gas. To circumvene this difficulty, we show, with a theoretical approach, that ice crystals behave much the same way as the hydrate crystals, concerning the Van der Waals forces that govern the agglomeration. This allows us to calculate the Hamaker constant of the hydrates. The second serie of experiments focuses on the permeability of a non consolidated porous medium under mechanical stress, where the pores are filled with ice crystals. Two silica beads populations are used to form a porous medium : 3 mm and 0.2 mm. With the large grains, results show two thresholds : for saturations below the lower threshold, the presence of crystals does not modify the permeability. For saturations above the upper threshold, the permeability vanishes almost completely (percolation phenomenon). Between these two limits, the permeability decreases exponentially with the saturation. With the fine grains, the permeability decreases with the same rate. The last part concerns the numerical study of the Mallik field. We write the equations describing the heat and mass transfers as a function of space and time. Then, we study a one-dimensional limiting case. This allows us to evaluate the influence of the experimentally obtained 'Permeability = f(saturation)' curve on the amount of produced gas. The proposed code gives a way to assess different production scenario, as the pressure reduction enhanced by ice formation.<br />La première partie est une étude bibiographique. Nous étudions les conditions thermodynamiques de stabilité des hydrates dans un milieu bulk et la composition des phases solide et liquide. Nous décrivons ensuite les écoulements dans les milieux poreux. Enfin, nous fusionnons les deux approches en étudiant l'influence du confinement sur la stabilité des hydrates. Un champ offshore (Blake Ridge) et un champ on-shore (Mallik) sont décrits dans le détail. Ce dernier servira de base aux simulations numériques ultérieures. La deuxième partie est consacrée aux expériences. Leur but est de mesurer la perméabilité d'un sédiment contenant des cristaux. Pour nous rapprocher des conditions géologiques naturelles, les cristaux sont réalisés en l'absence de phase gazeuse. Il s'avère que les hydrates se forment de manière très hétérogène dans le milieu poreux et ceci rend les mesures non représentatives. Nous pensons que ce résultat est général et qu'à l'échelle de temps du laboratoire, la formation d'hydrates de gaz répartis uniformément dans un milieu poreux est très difficile. Pour contourner cette difficulté, nous montrons de manière théorique que les cristaux de glace ont un comportement analogue aux cristaux d'hydrate (du point de vue des forces de Van der Waals qui gouvernent l'agglomération). Ceci nous permet de calculer la constante de Hamaker des hydrates. La deuxième série d'expériences s'intéresse donc à la perméabilité d'un milieu poreux non consolidé et sous contrainte dont les pores sont occupés par des cristaux de glace. Deux populations de grains de silice sont utilisées pour former le milieu poreux : 3 mm et 200 microns. Avec les gros grains, les résultats font apparaître deux seuils : pour des saturations plus faibles que le seuil inférieur, la présence des cristaux n'affecte pas la perméabilité. Pour des saturations plus grandes que le seul supérieur, la perméabilité est quasiment nulle (phénomène de percolation). Entre les deux, la perméabilité décroît exponentiellement en fonction de la saturation. Avec les grains fins, la perméabilité décroît avec la même vitesse. La dernière partie est une étude numérique sur le champ Mallik. Après avoir posé les équations décrivant les transferts massiques et de chaleur dans l'espace et au cours du temps, nous étudions un cas limite unidimensionnel. Ceci nous permet de voir l'influence de la courbe 'Perméabilité = f(saturation)' obtenue expérimentalement sur la quantité de gaz produite. Le code proposé permet également d'évaluer différents scénarios de production, dont la dépressurisation assistée par formation de glace.
- Subjects :
- refractive index
milieu poreux
production model
[SPI.NRJ]Engineering Sciences [physics]/Electric power
ice
porous medium
forces de Van der Waals
perméabilité
Van der Waals forces
cristallisation
glace
indice de réfraction
Hamaker constant
constante de Hamaker
permeability
Hydrates de gaz
modèle de production
[SPI.NRJ] Engineering Sciences [physics]/Electric power
Gas hydrates
Subjects
Details
- Language :
- French
- Database :
- OpenAIRE
- Journal :
- Energie électrique. Ecole Nationale Supérieure des Mines de Saint-Etienne, 2005. Français
- Accession number :
- edsair.dedup.wf.001..d9f8ac1aa6f51979f98b728188c5c13f