Back to Search Start Over

Fast growth of thin multi-crystalline silicon ribbons by the RST method

Authors :
Heilbronn, Bertrand
De Moro, Fabrice
Jolivet, Emilie
Tupin, Elsa
Chau, Benjamin
Varrot, Romain
Drevet, Beatrice
Bailly, Séverine
Rey, Delphine
Xi, Yinghao
Riberi-Béridot, Thècle
Mangelinck-Noel, Nathalie
Reinhart, Guillaume
Regula, Gabrielle
Solarforce S.A.
Institut National de L'Energie Solaire (INES)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP)
Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Source :
Crystal Research and Technology, Crystal Research and Technology, Wiley-VCH Verlag, 2015, 50 (1), pp.101-114. ⟨10.1002/crat.201400213⟩, Crystal Research and Technology, 2015, 50 (1), pp.101-114. ⟨10.1002/crat.201400213⟩
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

International audience; The ribbon on sacrificial template (RST) process is a ribbon direct-wafering technology with specific ability for high throughput and thin multicrystalline wafer production, in the range of 60-140 μm. Mechanical and electrical properties of the RST material were investigated. Ball on ring and four-point bending tests showed good fracture stress values up to 260 MPa. The conversion efficiency potential for passivated emitter and rear cells (PERC) made out from the RST material, around 16%, is shown to be limited by defects reducing minority carrier lifetime. The interaction between impurities, such as C and transitions metals, with structural defects such as dislocations, results in highly recombinative areas in RST wafers. A model is proposed which shows that the carbon substrate is an important source of carbon contamination in the silicon melt during the growth of the ribbon. This high C contamination can be accompanied by transition metal contamination and can have an influence on the growth stability and on the generation of structural defects, especially if C accumulates in a boundary layer just above the growth interface. The study of the segregation of Sb indicates that the process conditions are close to the case of the diffusive regime near the solid/liquid interface, with a boundary layer thickness of about 70 μm.

Details

Language :
English
ISSN :
02321300 and 15214079
Database :
OpenAIRE
Journal :
Crystal Research and Technology, Crystal Research and Technology, Wiley-VCH Verlag, 2015, 50 (1), pp.101-114. ⟨10.1002/crat.201400213⟩, Crystal Research and Technology, 2015, 50 (1), pp.101-114. ⟨10.1002/crat.201400213⟩
Accession number :
edsair.dedup.wf.001..d96ad1c580077363d06250e9bad46011