Back to Search Start Over

Defect propagation at the anode in Polymer Electrolyte Membrane Fuel Cells

Authors :
Touhami, Salah
Crouillere, Marie
Barboza-da-silva, Helen
Mainka, Julia
Dillet, Jérôme
Nayoze-Coynel, Christine
Bas, Corine
Dubau, Laetitia
Kaddouri, Assma El
Dubelley, Florence
Druart, Florence
CAUFFET , GILLES
Chatenet, Marian
Rosini, Sébastien
Bultel, Yann
Micoud, Fabrice
Lionel, Flandin
Chadebec, Olivier
Lottin, Olivier
Laboratoire Énergies et Mécanique Théorique et Appliquée (LEMTA )
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Genèse et Usage d'Interfaces Durables pour l'Energie (GUIDE)
Laboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces (LEPMI)
Institut de Chimie du CNRS (INC)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
G2Elab-Electronique de puissance (G2Elab-EP)
Laboratoire de Génie Electrique de Grenoble (G2ELab )
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN)
Institut National de L'Energie Solaire (INES)
Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Electrochimie Interfaciale et Procédés (EIP)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
Charvin, Nicolas
Source :
EFCF2021-25th EFCF Conference-Low-temperature Electrolysers, Fuel Cells H2 Processing, EFCF2021-25th EFCF Conference-Low-temperature Electrolysers, Fuel Cells H2 Processing, Jun 2021, online, Switzerland
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; Defaults propagation in Membrane Electrode Assemblies (MEA) of Polymer Electrolyte Membrane Fuel Cells (PEMFC) was investigated through an Accelerated Stress Test (AST) consisting load (and thus potential) cycling, load driven RH cycling and Open Circuit Voltage. Customized MEA without and with several defects at the anode Catalyst Layer (CL), i.e. lack or over thickness, at two different locations (near the hydrogen inlet or near the hydrogen outlet) were fabricated and subjected to the AST. Electrochemical characterization was performed periodically using a segmented cell which allows to follow the evolution of the cell performance, as well as anode and cathode and ElectroChemical Surface Area (ECSA) over the test period with a spatial resolution along the gas channels. The primary results indicate a significant impact of the default on the aging rates in all cases, as well as a significant impact on the default location in the case of the MEA with a default of the anode CL near the hydrogen inlet: we observed a default propagation along the hydrogen flow direction monitored through the evolution of local ECSA and its standard variation between the beginning and the end of the test. The segments neighboring the defect seemed more affected than the others. No significant impact was evidenced however when the default was located near the anode outlet. These observations were completed by post-mortem analysis of the membrane following the AST: the MEA with a lack of anode CL evidenced thinning of the PFSA layer on the cathode side near the location of the default.

Details

Language :
English
Database :
OpenAIRE
Journal :
EFCF2021-25th EFCF Conference-Low-temperature Electrolysers, Fuel Cells H2 Processing, EFCF2021-25th EFCF Conference-Low-temperature Electrolysers, Fuel Cells H2 Processing, Jun 2021, online, Switzerland
Accession number :
edsair.dedup.wf.001..ce18f8d518f54ed297dcdd1aab24160e