Back to Search Start Over

A Low-Cost Motion Capture Corpus in French Sign Language for Interpreting Iconicity and Spatial Referencing Mechanisms

Authors :
Mertz, Clémence
Barreaud, Vincent
Le Naour, Thibaut
Lolive, Damien
Gibet, Sylvie
Expressiveness in Human Centered Data/Media (EXPRESSION)
SIGNAL, IMAGE ET LANGAGE (IRISA-D6)
Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA)
Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Source :
Language Resources and Evaluation Conference, Language Resources and Evaluation Conference, Jun 2022, Marseille, France
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

The automatic translation of sign language videos into transcribed texts is rarely approached in its whole, as it implies to finely model the grammatical mechanisms that govern these languages. The presented work is a first step towards the interpretation of French sign language (LSF) by specifically targeting iconicity and spatial referencing. This paper describes the LSF-SHELVES corpus as well as the original technology that was designed and implemented to collect it. Our final goal is to use deep learning methods to circumvent the use of models in spatial referencing recognition. In order to obtain training material with sufficient variability, we designed a lightweight (and low-cost) capture protocol that enabled us to collect data from a large panel of LSF signers. This protocol involves the use of a portable device providing a 3D skeleton, and of a software developed specifically for this application to facilitate the post-processing of handshapes. The LSF-SHELVES includes simple and compound iconic and spatial dynamics, organized in 6 complexity levels, representing a total of 60 sequences signed by 15 LSF signers.

Details

Language :
English
Database :
OpenAIRE
Journal :
Language Resources and Evaluation Conference, Language Resources and Evaluation Conference, Jun 2022, Marseille, France
Accession number :
edsair.dedup.wf.001..cdcc8ef1f92b837ce7040ee79b466322