Back to Search Start Over

Combinations of Theories and the Bernays-Schönfinkel-Ramsey Class

Authors :
Fontaine, Pascal
Proof-oriented development of computer-based systems (MOSEL)
INRIA Lorraine
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
Bernhard Beckert
Source :
4th International Verification Workshop-VERIFY'07, 4th International Verification Workshop-VERIFY'07, Jul 2007, Bremen, Germany. pp.37-54
Publication Year :
2007
Publisher :
HAL CCSD, 2007.

Abstract

URL : http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-259/paper06.pdf; International audience; The Bernays-Schönfinkel-Ramsey (BSR) class of formulas is the class of formulas that, when written in prenex normal form, have an quantifier prefix and do not contain any function symbols. This class is decidable. We show here that BSR theories can furthermore be combined with another disjoint decidable theory, so that we obtain a decision procedure for quantifier-free formulas in the combination of the BSR theory and another decidable theory. The classical Nelson-Oppen combination scheme requires theories to be stably-infinite, ensuring that, if a model is found for both theories in the combination, models agree on cardinalities and a global model can be built. We show that combinations with BSR theories can be much more permissive, even though BSR theories are not always stably-infinite. We state that it is possible to describe exactly all the (finite or infinite) cardinalities of the models of a given BSR theory. For the other theory, it is thus only required to be able to decide if there exists a model of a given cardinality. With this result, it is notably possible to use some set operators, operators on relations, orders -- any operator that can be expressed by a set of BSR formulas -- together with the usual objects of SMT solvers, notably integers, reals, uninterpreted symbols, enumerated types.

Details

Language :
English
Database :
OpenAIRE
Journal :
4th International Verification Workshop-VERIFY'07, 4th International Verification Workshop-VERIFY'07, Jul 2007, Bremen, Germany. pp.37-54
Accession number :
edsair.dedup.wf.001..cd5a77bbe973073bff6a102ac6599203