Back to Search Start Over

Unusual layer-dependent charge distribution, collective mode coupling, and superconductivity in multilayer cuprate Ba2Ca3Cu4O8F2

Authors :
Chen, Yulin
Iyo, Akira
Yang, Wanli
Ino, Akihiro
Arita, Masashi
Johnston, Steve
Eisaki, Hiroshi
Namatame, Hirofumi
Taniguchi, Masaki
Devereaux, Thomas P
Hussain, Zahid
Shen, Z -X
Publication Year :
2016

Abstract

Low energy ultrahigh momentum resolution angle resolved photoemission spectroscopy study on four-layer self-doped high T-c superconductor Ba2Ca3Cu4O8F2 (F0234) revealed fine structure in the band dispersion, identifying the unconventional association of hole and electron doping with the inner and outer CuO2 layers, respectively. For the states originating from two inequivalent CuO2 layers, different energy scales are observed in dispersion kinks associated with the collective mode coupling, with the larger energy scale found in the electron (n-) doped state which also has stronger coupling strength. Given the earlier finding that the superconducting gap is substantially larger along the n-type Fermi surface, our observations connect the mode coupling energy and strength with magnitude of the pairing gap.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.dedup.wf.001..cd560e62630a828d05e565c664798474