Back to Search Start Over

Convergence of Stochastic Search Algorithms to Finite Size Pareto Set Approximations

Authors :
Schuetze, Oliver
Laumanns, Marco
Coello Coello, Carlos
Dellnitz, Michael
Talbi, El-Ghazali
Parallel Cooperative Multi-criteria Optimization (DOLPHIN)
Laboratoire d'Informatique Fondamentale de Lille (LIFL)
Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)
IFORS
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)
Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)
IFIM
University of Paderborn-IFIM
Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)
INRIA
IFIM-University of Paderborn
Source :
[Research Report] RR-6063, INRIA. 2006
Publication Year :
2006
Publisher :
HAL CCSD, 2006.

Abstract

In this work we study the convergence of generic stochastic search algorithms toward the Pareto set of continuous multi-objective optimization problems. The focus is on obtaining a finite approximation that should capture the entire solution set in a suitable sense, which will be defined using the concept of $\epsilon$-dominance. Under mild assumptions about the process to generate new candidate solutions, the limit approximation set will be determined entirely by the archiving strategy. We investigate two different archiving strategies which lead to a different limit behavior of the algorithms, yielding bounds on the obtained approximation quality as well as on the cardinality of the resulting Pareto set approximation. Finally, we demonstrate the potential for a possible hybridization of a given stochastic search algorithm with a particular local search strategy -- multi-objective continuation methods -- by showing that the concept of $\epsilon$-dominance can be integrated into this approach in a suitable way.

Details

Language :
English
Database :
OpenAIRE
Journal :
[Research Report] RR-6063, INRIA. 2006
Accession number :
edsair.dedup.wf.001..ccb6d88bc3956fc6ef33683ecc2dff15