Back to Search Start Over

The response of glaciers to climate change

Authors :
Klok, Elisabeth Jantina
University Utrecht
Publication Year :
2003

Abstract

The research described in this thesis addresses two aspects of the response of glaciers to climate change. The first aspect deals with the physical processes that govern the interaction between glaciers and climate change and was treated by (1) studying the spatial and temporal variation of the glacier albedo from satellite images, (2) investigating the spatial distribution of the surface energy and mass balance of a glacier, and (3) investigating the sensitivity of the mass balance to climate change. All of these studies are focused on Morteratschgletscher in Switzerland. The second aspect is the climatic interpretation of glacier length fluctuations. This was studied by developing a model that calculates historical mass balance records from global glacier length fluctuations. To increase our understanding of the variations in glacier albedo, we derived surface albedos from 12 Landsat images. This constituted a stringent test for the retrieval methodology applied because Morteratschgletscher is very steep and rugged, which strongly influences the satellite signal. We aimed to retrieve surface albedos while taking into account all important processes that influence the relationship between the satellite signal and the surface albedo, e.g. the topographic effects on incoming solar radiation, and the anisotropic nature of the reflection pattern of ice and snow surfaces. We then analysed the spatial and temporal pattern of the surface albedo. We developed a two-dimensional mass balance model based on the surface energy balance to study the spatial distribution of the energy and mass balance fluxes of Morteratschgletscher. Meteorological data from weather stations in the vicinity of Morteratschgletscher serve as input for the model. We corrected incoming solar radiation for shading, aspect, slope, reflection from surrounding slopes, and obstruction of the sky. Ignoring these effects results in an increase in solar radiation of 37%, causing a decrease in the mass balance of 0.34 m w.e. We modelled the mass balance for 1999 and 2000 and analysed the spatial distribution. We then ran the model for a period of 23 years and calculated the mass balance sensitivity to climate change by perturbing air temperature and precipitation. The mass balance sensitivity to temperature and precipitation are –0.59 m w.e. a-1 K-1 and 0.17 m w.e. a-1 per 10 percent respectively. We also used three other albedo parameterisations to calculate the mass balance sensitivity since albedo parameterisations are often regarded as a main source of error in mass balance models. We concluded that an accurate estimate of the mass balance sensitivity requires a parameterisation that captures the process of a decreasing snow albedo when a snow pack gets older or thinner. To extract a climate signal from worldwide glacier length fluctuations, we developed a simple model. The climate signal is represented as a reconstruction of the mass balance and the equilibrium line altitude (ELA). The model was tested on seventeen European glacier length records and then applied to nineteen glacier length records from different parts of the world. Between 1910 and 1959, the average increase in the reconstructed ELAs is 33 m. This implies that during the first half of the twentieth century, the climate was warmer or drier than before. The reconstructed ELAs decrease to lower elevations after 1960 and up till 1980, when most of the reconstructions end. The results can be translated into a global temperature increase of about 0.8 K for the period 1910-1959

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.dedup.wf.001..c0358bcae0f3252b9a330239507d7b59