Back to Search Start Over

Curve clustering and variable selection in mixed effects functional models. Applications to molecular biology

Authors :
Giacofci, Joyce
Laboratoire Jean Kuntzmann (LJK)
Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
Université de Grenoble
Sophie Lambert-Lacroix
Franck Picard
STAR, ABES
Source :
Mathématiques générales [math.GM]. Université de Grenoble, 2013. Français. ⟨NNT : 2013GRENM025⟩
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

More and more scientific studies yield to the collection of a large amount of data that consist of sets of curves recorded on individuals. These data can be seen as an extension of longitudinal data in high dimension and are often modeled as functional data in a mixed-effects framework. In a first part we focus on performing unsupervised clustering of these curves in the presence of inter-individual variability. To this end, we develop a new procedure based on a wavelet representation of the model, for both fixed and random effects. Our approach follows two steps : a dimension reduction step, based on wavelet thresholding techniques, is first performed. Then a clustering step is applied on the selected coefficients. An EM-algorithm is used for maximum likelihood estimation of parameters. The properties of the overall procedure are validated by an extensive simulation study. We also illustrate our method on high throughput molecular data (omics data) like microarray CGH or mass spectrometry data. Our procedure is available through the R package "curvclust", available on the CRAN website. In a second part, we concentrate on estimation and dimension reduction issues in the mixed-effects functional framework. Two distinct approaches are developed according to these issues. The first approach deals with parameters estimation in a non parametrical setting. We demonstrate that the functional fixed effects estimator based on wavelet thresholding techniques achieves the expected rate of convergence toward the true function. The second approach is dedicated to the selection of both fixed and random effects. We propose a method based on a penalized likelihood criterion with SCAD penalties for the estimation and the selection of both fixed effects and random effects variances. In the context of variable selection we prove that the penalized estimators enjoy the oracle property when the signal size diverges with the sample size. A simulation study is carried out to assess the behaviour of the two proposed approaches.<br />Un nombre croissant de domaines scientifiques collectent de grandes quantités de données comportant beaucoup de mesures répétées pour chaque individu. Ce type de données peut être vu comme une extension des données longitudinales en grande dimension. Le cadre naturel pour modéliser ce type de données est alors celui des modèles mixtes fonctionnels. Nous traitons, dans une première partie, de la classification non-supervisée dans les modèles mixtes fonctionnels. Nous présentons dans ce cadre une nouvelle procédure utilisant une décomposition en ondelettes des effets fixes et des effets aléatoires. Notre approche se décompose en deux étapes : une étape de réduction de dimension basée sur les techniques de seuillage des ondelettes et une étape de classification où l'algorithme EM est utilisé pour l'estimation des paramètres par maximum de vraisemblance. Nous présentons des résultats de simulations et nous illustrons notre méthode sur des jeux de données issus de la biologie moléculaire (données omiques). Cette procédure est implémentée dans le package R "curvclust" disponible sur le site du CRAN. Dans une deuxième partie, nous nous intéressons aux questions d'estimation et de réduction de dimension au sein des modèles mixtes fonctionnels et nous développons en ce sens deux approches. La première approche se place dans un objectif d'estimation dans un contexte non-paramétrique et nous montrons dans ce cadre, que l'estimateur de l'effet fixe fonctionnel basé sur les techniques de seuillage par ondelettes possède de bonnes propriétés de convergence. Notre deuxième approche s'intéresse à la problématique de sélection des effets fixes et aléatoires et nous proposons une procédure basée sur les techniques de sélection de variables par maximum de vraisemblance pénalisée et utilisant deux pénalités SCAD sur les effets fixes et les variances des effets aléatoires. Nous montrons dans ce cadre que le critère considéré conduit à des estimateurs possédant des propriétés oraculaires dans un cadre où le nombre d'individus et la taille des signaux divergent. Une étude de simulation visant à appréhender les comportements des deux approches développées est réalisée dans ce contexte.

Details

Language :
French
Database :
OpenAIRE
Journal :
Mathématiques générales [math.GM]. Université de Grenoble, 2013. Français. ⟨NNT : 2013GRENM025⟩
Accession number :
edsair.dedup.wf.001..ad4a18f4d525afa886e6e538114d35fc