Back to Search Start Over

A Parallel Algorithm for solving BSDEs - Application to the pricing and hedging of American options

Authors :
Labart, Céline
Lelong, Jérôme
Laboratoire de Mathématiques (LAMA)
Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
Financial mathematics (MATHFI)
Inria Paris-Rocquencourt
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École des Ponts ParisTech (ENPC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)
Mathématiques financières (MATHFI)
Laboratoire Jean Kuntzmann (LJK)
Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
LAMA-LJK
Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])
Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Joseph Fourier - Grenoble 1 (UJF)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Joseph Fourier - Grenoble 1 (UJF)-Université Pierre Mendès France - Grenoble 2 (UPMF)
Source :
[Research Report] LAMA-LJK. 2011
Publication Year :
2011
Publisher :
HAL CCSD, 2011.

Abstract

25 pages; We present a parallel algorithm for solving backward stochastic differential equations (BSDEs in short) which are very useful theoretic tools to deal with many financial problems ranging from option pricing option to risk management. Our algorithm based on Gobet and Labart (2010) exploits the link between BSDEs and non linear partial differential equations (PDEs in short) and hence enables to solve high dimensional non linear PDEs. In this work, we apply it to the pricing and hedging of American options in high dimensional local volatility models, which remains very computationally demanding. We have tested our algorithm up to dimension 10 on a cluster of 512 CPUs and we obtained linear speedups which proves the scalability of our implementation

Details

Language :
English
Database :
OpenAIRE
Journal :
[Research Report] LAMA-LJK. 2011
Accession number :
edsair.dedup.wf.001..a8e8a71b6cec12d156bb761c047ebf02