Back to Search Start Over

Suitability Of Cellular Network Signaling Data For Origin-Destination Matrix Construction: A Case Study Of Lyon Region (France)

Authors :
Fekih, Mariem
BELLEMANS, Tom
Smoreda, Zbigniew
Bonnel, Patrick
Furno, Angelo
GALLAND, Stephane
Cadic, Ifsttar
Transportation Research Institute (IMOB), Hasselt University
Orange Labs [Chatillon]
Orange Labs
Laboratoire Aménagement Économie Transports (LAET)
Université Lumière - Lyon 2 (UL2)-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire d'Ingénierie Circulation Transport (LICIT UMR TE)
Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École Nationale des Travaux Publics de l'État (ENTPE)-Université de Lyon
Laboratoire d'Electronique, d'Informatique et d'Image [EA 7508] (Le2i)
Université de Technologie de Belfort-Montbeliard (UTBM)-Université de Bourgogne (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM)
Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS)
Source :
TRB 2019, 98th Annual Meeting Transportation Research Board, TRB 2019, 98th Annual Meeting Transportation Research Board, Jan 2019, Washigton, D.C., United States
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

TRB 2019, 98th Annual Meeting Transportation Research Board, Washigton, D.C., ETATS-UNIS, 13-/01/2019 - 17/01/2019; Spatiotemporal data, and more specifically origin-destination matrices, are critical inputs to mobility studies for transportation planning and urban management purposes. In this paper, we propose a methodology to infer origin-destination (O-D) matrices based on passively-collected cellular signaling data of millions of anonymized mobile phone users in the Rhône-Alpes region, France. This dataset, which consists of records time-stamped with users' unique identifier and tower locations, is used to first analyze the cell phone activity degree indicators of each user in order to qualify the mobility information involved in these records. These indicators serve as filtering criteria to identify users whose device transactions are sufficiently distributed over the analyzed period to allow studying their mobility. Trips are then extracted from the spatiotemporal traces of users for whom the home location could be detected. Trips have been derived based on a minimum stationary time assumption that enables to determine activity (stop) zones for each user. As a large, but still partial, fraction of the population is observed, scaling is required to obtain an O-D matrix for the full population. We propose a method to perform this scaling and we show that signaling data-based O-D matrix carries similar estimations as those that can be obtained via travel surveys.

Details

Language :
English
Database :
OpenAIRE
Journal :
TRB 2019, 98th Annual Meeting Transportation Research Board, TRB 2019, 98th Annual Meeting Transportation Research Board, Jan 2019, Washigton, D.C., United States
Accession number :
edsair.dedup.wf.001..a069ad68310d5eeaf32713a788431389