Back to Search
Start Over
Link between gut-microbiome derived metabolite and shared gene-effects with hepatic steatosis and fibrosis in NAFLD
- Source :
- Hepatology, Hepatology, Wiley-Blackwell, 2018, 68 (3), pp.918--932, Hepatology (Baltimore, Md.), vol 68, iss 3
- Publication Year :
- 2018
- Publisher :
- HAL CCSD, 2018.
-
Abstract
- International audience; Previous studies have shown that gut-microbiome is associated with nonalcoholic fatty liver disease (NAFLD). We aimed to examine if serum metabolites, especially those derived from the gut-microbiome, have a shared gene-effect with hepatic steatosis and fibrosis. This is a cross-sectional analysis of a prospective discovery cohort including 156 well-characterized twins and families with untargeted metabolome profiling assessment. Hepatic steatosis was assessed using magnetic-resonance-imaging proton-density-fat-fraction (MRI-PDFF) and fibrosis using MR-elastography (MRE). A twin additive genetics and unique environment effects (AE) model was used to estimate the shared gene-effect between metabolites and hepatic steatosis and fibrosis. The findings were validated in an independent prospective validation cohort of 156 participants with biopsy-proven NAFLD including shotgun metagenomics sequencing assessment in a subgroup of the cohort. In the discovery cohort, 56 metabolites including 6 microbial metabolites had a significant shared gene-effect with both hepatic steatosis and fibrosis after adjustment for age, sex and ethnicity. In the validation cohort, 6 metabolites were associated with advanced fibrosis. Among them, only one microbial metabolite, 3-(4-hydroxyphenyl)lactate, remained consistent and statistically significantly associated with liver fibrosis in the discovery and validation cohort (fold-change of higher-MRE versus lower-MRE: 1.78, P \textless 0.001 and of advanced versus no advanced fibrosis: 1.26, P = 0.037, respectively). The share genetic determination of 3-(4-hydroxyphenyl)lactate with hepatic steatosis was R-G:0.57,95%CI:0.27-0.80, P \textless 0.001 and with fibrosis was R-G:0.54,95%CI:0.036-1, P = 0.036. Pathway reconstruction linked 3-(4-hydroxyphenyl)lactate to several human gut-microbiome species. In the validation cohort, 3-(4-hydroxyphenyl)lactate was significantly correlated with the abundance of several gut-microbiome species, belonging only to Firmicutes, Bacteroidetes and Proteobacteria phyla, previously reported as associated with advanced fibrosis. Conclusion: This proof of concept study provides evidence of a link between the gut-microbiome and 3-(4-hydroxyphenyl)lactate that shares gene-effect with hepatic steatosis and fibrosis. (Hepatology 2018).
- Subjects :
- Liver Cirrhosis
Adult
Male
[SDV]Life Sciences [q-bio]
Chronic Liver Disease and Cirrhosis
Clinical Sciences
Immunology
steatohepatitis
prospective twin
Medical Biochemistry and Metabolomics
Proof of Concept Study
Genetics of NAFLD in Twins Consortium
Oral and gastrointestinal
Non-alcoholic Fatty Liver Disease
Clinical Research
Genetics
Humans
2.1 Biological and endogenous factors
Aetiology
Aged
human blood metabolites
risk
Phenylpropionates
Gastroenterology & Hepatology
Liver Disease
cirrhosis
association
nonalcoholic
dysbiosis
Middle Aged
Metformin
Gastrointestinal Microbiome
Cross-Sectional Studies
fatty liver-disease
identification
Female
Digestive Diseases
metaanalysis
Subjects
Details
- Language :
- English
- ISSN :
- 02709139 and 15273350
- Database :
- OpenAIRE
- Journal :
- Hepatology, Hepatology, Wiley-Blackwell, 2018, 68 (3), pp.918--932, Hepatology (Baltimore, Md.), vol 68, iss 3
- Accession number :
- edsair.dedup.wf.001..9f75c12fbd20302672019cfb1e6d8dba