Back to Search Start Over

Strongly bound excitons in Ruddlesden-Popper 2D perovskites

Authors :
Blancon, Jean Christophe
Steir, Andreas
Nie, Wanyie
Tsai, Hsinhan
Stoumpos, Constantinos
Crooker, Scott
Even, Jacky
Mohite, Aditya
Los Alamos National Laboratory (LANL)
Rice University [Houston]
Northwestern University [Evanston]
Institut des Fonctions Optiques pour les Technologies de l'informatiON (Institut FOTON)
Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS)
Source :
American Physical Society March Meeting 2018 (APS March Meeting 2018), American Physical Society March Meeting 2018 (APS March Meeting 2018), Mar 2018, Los Angeles, United States
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; Ruddlesden-Popper halide perovskites are 2D solution-processed quantum wells with a general formula A2A’n-1MnX3n+1, where A, A’ are cations, M is a metal, X is a halide, and their physical properties can be tuned by varying the perovskite layer thickness (n value). They have recently emerged as efficient semiconductors for optoelectronics [1-3]. However, fundamental questions concerning the nature of optical resonances, their scaling with quantum well thickness, and the physics behind the exciton properties, remain unresolved. Here, using optical spectroscopy and 60-Tesla magneto-absorption supported by modelling, we unambiguously demonstrate that the optical resonances arise from tightly bound excitons with binding energies varying from 470 meV to 125 meV with increasing thickness from n=1 to 5 [4]. Comprehensive modelling of exciton states enable the understanding of dielectric confinement effects which prevail over quantum confinement in 2D perovskites. From these results we produce a general scaling behaviour for the binding energy of exciton states in Ruddlesden-Popper perovskites.[1] Tsai et al., Nature (2016), 536, 312-316.[2] M. Yuan et al., Nat. Nanotechnol. (2016), 11, 872-877.[3] Blancon et al., Science (2017), 355, 1288-1292.[4] Blancon et al., arXiv:1710.07653.

Details

Language :
English
Database :
OpenAIRE
Journal :
American Physical Society March Meeting 2018 (APS March Meeting 2018), American Physical Society March Meeting 2018 (APS March Meeting 2018), Mar 2018, Los Angeles, United States
Accession number :
edsair.dedup.wf.001..9ec28b34cd008f2eb133543fd5586e57