Back to Search
Start Over
Spaceflight-related suboptimal conditions can accentuate the altered gravity response of Drosophila transcriptome
- Source :
- Digital.CSIC. Repositorio Institucional del CSIC, instname, Molecular Ecology, 19(19), 4255-4264. Wiley-Blackwell, Herranz, R, Benguría, A, Laván, D A, López-Vidriero, I, Gasset, G, Javier Medina, F, van Loon, J J W A & Marco, R 2010, ' Spaceflight-related suboptimal conditions can accentuate the altered gravity response of Drosophila transcriptome ', Molecular Ecology, vol. 19, no. 19, pp. 4255-4264 . https://doi.org/10.1111/j.1365-294X.2010.04795.x
- Publication Year :
- 2010
- Publisher :
- Blackwell Publishing, 2010.
-
Abstract
- Genome-wide transcriptional profiling shows that reducing gravity levels during Drosophila metamorphosis in the International Space Station (ISS) causes important alterations in gene expression: a large set of differentially expressed genes (DEGs) are observed compared to 1g controls. However, the preparation procedures for spaceflight and the nonideal environmental conditions on board the ISS subject the organisms to additional environmental stresses that demonstrably affect gene expression. Simulated microgravity experiments performed on the ground, under ideal conditions for the flies, using the random position machine (RPM), show much more subtle effects on gene expression. However, when the ground experiments are repeated under conditions designed to reproduce the additional environmental stresses imposed by spaceflight procedures, 79% of the DEGs detected in the ISS are reproduced by the RPM experiment. Gene ontology analysis of them shows they are genes that affect respiratory activity, developmental processes and stress-related changes. Here, we analyse the effects of microgravity on gene expression in relation to the environmental stresses imposed by spaceflight. Analysis using 'gene expression dynamics inspector' (GEDI) self-organizing maps reveals a subtle response of the transcriptome to microgravity. Remarkably, hypergravity simulation induces similar response of the transcriptome, but in the opposite direction, i.e. the genes promoted under microgravity are usually suppressed under hypergravity. These results suggest that the transcriptome is finely tuned to normal gravity and that microgravity, together with environmental constraints associated with space experiments, can have profound effects on gene expression. © 2010 Blackwell Publishing Ltd.<br />This work was supported by grants from the Spanish Space Program in the ‘Plan Nacional de Investigación Científica y Desarrollo Tecnológico’ [ESP2001-4522-PE and ESP2006-13600-C02-01 to Marco. and ESP2006-13600-C02-02 to Medina.] and the Dutch NWO-ALW-SRON grant [MG-057 to van Loon]. R. Herranz during the Cervantes mission and D. Lavan during the post-flight analysis were supported by Spanish Ministerio de Educación y Ciencia within the FPI fellowship program.
Details
- Language :
- English
- ISSN :
- 1365294X and 09621083
- Database :
- OpenAIRE
- Journal :
- Molecular Ecology
- Accession number :
- edsair.dedup.wf.001..9b0465139e67957c3d355dc81ee43ffd