Back to Search Start Over

Optimal Rate of Convergence of a Stochastic Particle Method to Solutions of 1D Viscous Scalar Conservation Law Equations

Authors :
Mireille Bossy
Probabilistic numerical methods (OMEGA)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Centre National de la Recherche Scientifique (CNRS)
INRIA
Source :
[Research Report] RR-3924, INRIA. 2000, pp.33, Mireille Bossy
Publication Year :
2000
Publisher :
HAL CCSD, 2000.

Abstract

The aim of this work is to present the analysis of the rate of convergence of a stochastic particle method for 1D viscous scalar conservation law equations. The convergence rate result is $\mathcal O(\D t + 1/\sqrt{N})$, where $N$ is the number of numerical particles and $\D t$ is the time step of the first order Euler scheme applied to the dynamic of the interacting particles.

Details

Language :
English
Database :
OpenAIRE
Journal :
[Research Report] RR-3924, INRIA. 2000, pp.33, Mireille Bossy
Accession number :
edsair.dedup.wf.001..9a7eba89e96928c229e842541e58072d