Back to Search Start Over

Random forest as a tumour genetic marker extractor

Authors :
Pérez Arnal, Raquel Leandra|||0000-0002-0041-8146
Garcia Gasulla, Dario|||0000-0001-6732-5641
Torrents Rodas, David
Pares, Ferran
Cortés García, Claudio Ulises|||0000-0003-0192-3096
Labarta Mancho, Jesús José|||0000-0002-7489-4727
Ayguadé Parra, Eduard|||0000-0002-5146-103X
Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
Barcelona Supercomputing Center
Universitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic
Universitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions
Source :
UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
Publication Year :
2019
Publisher :
IOS Press, 2019.

Abstract

Finding tumour genetic markers is essential to biomedicine due to their relevance for cancer detection and therapy development. In this paper, we explore a recently released dataset of chromosome rearrangements in 2,586 cancer patients, where different sorts of alterations have been detected. Using a Random Forest classifier, we evaluate the relevance of several features (some directly available in the original data, some engineered by us) related to chromosome rearrangements. This evaluation results in a set of potential tumour genetic markers, some of which are validated in the bibliography, while others are potentially novel. This work is partially supported by the Joint Study Agreement no. W156463 under the IBM/BSC Deep Learning Center agreement, by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project, and by the Generalitat de Catalunya (contracts 2017-SGR-1414).

Details

Language :
English
Database :
OpenAIRE
Journal :
UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
Accession number :
edsair.dedup.wf.001..8fa5fd1c7318cd56fc2ee8ba880bb192