Back to Search Start Over

Ordonnancement d'objets par bandits unimodaux sur des graphes paramétriques

Authors :
Gauthier, Camille-Sovanneary
Gaudel, Romaric
Fromont, Elisa
Lompo, Aser
Large Scale Collaborative Data Mining (LACODAM)
Inria Rennes – Bretagne Atlantique
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-GESTION DES DONNÉES ET DE LA CONNAISSANCE (IRISA-D7)
Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA)
Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes 1 (UR1)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Centre de Recherche en Economie et Statistique [Bruz] (CREST)
Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] (ENSAI)
Institut Universitaire de France (IUF)
Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
École normale supérieure - Rennes (ENS Rennes)
Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique)
Source :
CAp 2021-Conférence sur l'Apprentissage automatique, CAp 2021-Conférence sur l'Apprentissage automatique, Jun 2021, Saint-Etienne (en ligne), France. pp.1
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; Nous cherchons à résoudre le problème du placement optimal (ordonnancement), en ligne, de K objets à L positions pré-déterminées sur une page web de manière à maximiser le nombre de clics des utilisateurs.Nous proposons un algorithme original, facile à implémenter et ayant des garanties théoriques fortes fonctionnant pour un modèle utilisateur basé positions(PBM) qui est bien adapté à un contexte dans lequel les objets sont placés sur une grille où aucune position n’est à priori meilleure. Notre algorithme propose une recommandation optimale à travers l’apprentissage d’un graphe compacte représentant les différentes permutations de L items parmi les K positions. La borne logarithmique de regret de notre algorithme de bandit est une conséquence directe de la propriété uni-modale de ce bandit par rapport au graphe appris.Des expérimentations comparant notre méthode à l’ état de l’art des algorithmes fonctionnant sur ce même modèle utilisateur, montrent que notre méthode est beaucoup plus efficace tout en fournissant des performances de regret du même niveau que les meilleurs algorithmes connus et ce sur des données synthétiques ou des données réelles.

Details

Language :
French
Database :
OpenAIRE
Journal :
CAp 2021-Conférence sur l'Apprentissage automatique, CAp 2021-Conférence sur l'Apprentissage automatique, Jun 2021, Saint-Etienne (en ligne), France. pp.1
Accession number :
edsair.dedup.wf.001..8e42efa99035143d4f05572b2c1277ad