Back to Search Start Over

Model choice using Approximate Bayesian Computation and Random Forests: analyses based on model grouping to make inferences about the genetic history of Pygmy human populations

Authors :
Arnaud Estoup
Louis Raynal
Paul Verdu
Jean-Michel Marin
Centre de Biologie pour la Gestion des Populations (UMR CBGP)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Université de Montpellier (UM)
Eco-Anthropologie et Ethnobiologie (EAE)
Muséum national d'Histoire naturelle (MNHN)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Institut Montpelliérain Alexander Grothendieck (IMAG)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Muséum national d'Histoire naturelle (MNHN)
Source :
Journal de la Société Française de Statistique, Journal de la Société Française de Statistique, Société Française de Statistique et Société Mathématique de France, 2018, 159 (3), pp.167-190, ResearcherID, HAL
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; In evolutionary biology, simulation-based methods such as Approximate Bayesian Computation (ABC) are well adapted to make statistical inferences about complex models of natural population histories. Pudlo et al. (2016) recently developed a novel approach based on the Random Forests method (RF): the ABC-RF algorithm. Here we present the results of analyses based on ABC-RF to make inferences about the history of Pygmy human populations from Western Central Africa from a microsatellite genetic dataset. A noticeable novelty of the statistical analyses presented here is the application of ABC-RF methodology to make model choice on predefined groups of models. We formalized eight complex evolutionary scenarios which incorporate (or not) three major events: (i) whether there exists an ancestral common Pygmy population, (ii) the possibility of introgression/migration events between Pygmy and non-Pygmy populations, and (iii) the possibility of a change in size in the past in the non-Pygmy African population. We show that our grouping approach allows disentangling with strong confidence the main evolutionary events characterizing the population history of interest. The selected final scenario corresponds to a common origin of all Western Central African Pygmy groups, with the ancestral Pygmy population having diverged, with asymmetrical genetic introgression, from a demographically expanding non-Pygmy population.

Details

Language :
English
ISSN :
19625197 and 21026238
Database :
OpenAIRE
Journal :
Journal de la Société Française de Statistique, Journal de la Société Française de Statistique, Société Française de Statistique et Société Mathématique de France, 2018, 159 (3), pp.167-190, ResearcherID, HAL
Accession number :
edsair.dedup.wf.001..86ea27a02599cdb62e4a6360ca5278d0