Back to Search
Start Over
SABES: Statistical Available Bandwidth EStimation from passive TCP measurements
- Source :
- UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Scopus-Elsevier
- Publication Year :
- 2020
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2020.
-
Abstract
- Estimating available network resources is fundamental when adapting the sending rate both at the application and transport layer. Traditional approaches either rely on active probing techniques or iteratively adapting the average sending rate, as is the case for modern TCP congestion control algorithms. In this paper, we propose a statistical method based on the inter-packet arrival time analysis of TCP acknowledgments to estimate a path available bandwidth. SABES first estimates the bottleneck link capacity exploiting the TCP flow slow start traffic patterns. Then, an heuristic based on the capacity estimation, provides an approximation of the end-to-end available bandwidth. Exhaustive experimentation on both simulations and real-world scenarios were conducted to validate our technique, and our results are promising. Furthermore, we train an artificial neural network to improve the estimation accuracy. This work was supported by the grant 2015DI023 as part of the Industrial PhD grants of AGAUR and Generalitat de Catalunya. Project co-financed by the Spanish Ministry of Ciencia Innovacion y Universidades with reference RTC-2017-6655-7 (FEDER).
- Subjects :
- Telecomunicació -- Tràfic -- Gestió
Available bandwidth
Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors [Àrees temàtiques de la UPC]
Computer network protocols
Passive probing
Telecommunication -- Traffic -- Management
Network machine learning
Protocols de xarxes d'ordinadors
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Scopus-Elsevier
- Accession number :
- edsair.dedup.wf.001..86bb8a4566574d103bba0e836d4fa35b