Back to Search Start Over

Kinetic Maintenance of Mobile k-Centres in Trees

Authors :
Paul, Christophe
Durocher, Stéphane
Algorithmes, Graphes et Combinatoire (ALGCO)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Source :
Discrete Applied Mathematics, Discrete Applied Mathematics, Elsevier, 2009, 157 (7), pp.1432-1446. ⟨10.1007/978-3-540-77120-3_31⟩
Publication Year :
2009
Publisher :
HAL CCSD, 2009.

Abstract

International audience; Given a set P of points (clients) on a weighted tree T , a k-centre of P corresponds to a set of k points (facilities) on T such that the maximum graph distance between any client and its nearest facility is minimized. We consider the mobile k-centre problem on trees. Let C denote a set of n mobile clients, each of which follows a continuous tra jectory on a weighted tree T . We establish tight bounds on the maximum relative velocity of the 1-centre and 2-centre of C . When each client in C moves with linear motion along a path on T , the motions of the corresponding 1-centre and 2-centre are piecewise linear; we derive a tight combinatorial bound of Θ(n) on the complexity of the motion of the 1-centre and corresponding bounds of O(n^2 α(n)) and Ω(n^2 ) for a 2-centre, where α(n) denotes the inverse Ackermann function. We describe efficient algorithms for calculating the tra jectories of the 1-centre and 2-centre of C : the 1-centre can be found in optimal time O(n log n) and a 2-centre can be found in time O(n^2 log n). These algorithms lend themselves to implementation within the framework of kinetic data structures. Finally, we examine properties of the mobile 1-centre on graphs and describe an optimal unit-velocity 2-approximation.

Details

Language :
English
ISSN :
0166218X
Database :
OpenAIRE
Journal :
Discrete Applied Mathematics, Discrete Applied Mathematics, Elsevier, 2009, 157 (7), pp.1432-1446. ⟨10.1007/978-3-540-77120-3_31⟩
Accession number :
edsair.dedup.wf.001..80f9b002a51d162ed064d73eeebe9a67
Full Text :
https://doi.org/10.1007/978-3-540-77120-3_31⟩