Back to Search Start Over

Energy conservation and dissipation properties of time-integration methods for nonsmooth elastodynamics with contact

Authors :
Acary, Vincent
Modelling, Simulation, Control and Optimization of Non-Smooth Dynamical Systems (BIPOP)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Laboratoire Jean Kuntzmann (LJK )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Source :
Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Wiley-VCH Verlag, 2016, 96 (5), pp.585-603. ⟨10.1002/zamm.201400231⟩, Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 2016, 96 (5), pp.585-603. ⟨10.1002/zamm.201400231⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

International audience; This article is devoted to the study of the conservation and the dissi-pation properties of the mechanical energy of several time–integration methods dedicated to the elasto–dynamics with unilateral contact. Given that the direct application of the standard schemes as the Newmark schemes or the generalized– α schemes leads to energy blow-up, we study two schemes dedicated to the time–integration of nonsmooth systems with contact: the Moreau–Jean scheme and the nonsmooth generalized–α scheme. The energy conservation and dissi-pation properties of the Moreau–Jean is firstly shown. In a second step, the nonsmooth generalized–α scheme is studied by adapting the previous works of Krenk and Høgsberg in the context of unilateral contact. Finally, the known properties of the Newmark and the Hilber–Hughes–Taylor (HHT) scheme in the unconstrained case are extended without any further assumptions to the case with contact.

Details

Language :
English
ISSN :
00442267 and 15214001
Database :
OpenAIRE
Journal :
Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Wiley-VCH Verlag, 2016, 96 (5), pp.585-603. ⟨10.1002/zamm.201400231⟩, Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 2016, 96 (5), pp.585-603. ⟨10.1002/zamm.201400231⟩
Accession number :
edsair.dedup.wf.001..8043b4583a8a765b4709b25642a63335