Back to Search Start Over

Homogenization cases of heat transfer in structures with interfacial barriers

Authors :
Poliševski, Dan
Bunoiu, Renata
Stanescu, Alina
'Simion Stoilow' Institute of Mathematics (IMAR)
Romanian Academy of Sciences
Institut Élie Cartan de Lorraine (IECL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
BUNOIU, Renata
Source :
Bulletin mathématique de la Société des Sciences mathématiques de Roumanie, Bulletin mathématique de la Société des Sciences mathématiques de Roumanie, Société des Sciences mathématiques de Roumanie, 2015, 58(106) (4), pp.463-473
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

International audience; The paper study the asymptotic behaviour of the heat transfer in a bounded domain formed by two interwoven connected components separated by an interface on which the heat flux is continuous and the temperature subjects to a first-order jump condition. The macroscopic laws and their effective coefficients are obtained by means of the two-scale convergence technique of the periodic homogenization theory for several orders of magnitude of the conductivities and of the jump transmission coefficient.

Details

Language :
English
ISSN :
12203874 and 20650264
Database :
OpenAIRE
Journal :
Bulletin mathématique de la Société des Sciences mathématiques de Roumanie, Bulletin mathématique de la Société des Sciences mathématiques de Roumanie, Société des Sciences mathématiques de Roumanie, 2015, 58(106) (4), pp.463-473
Accession number :
edsair.dedup.wf.001..7a1f8cae73d66243f9db668b4741d9e1