Back to Search
Start Over
Photocathodes beyond NiO:charge transfer dynamics in a π‑conjugated polymer functionalized with Ruphotosensitizers
- Source :
- Scientific Reports, Scientific Reports, 2021, 11 (1), pp.2787. ⟨10.1038/s41598-021-82395-x⟩, Scientific Reports, Nature Publishing Group, 2021, 11 (1), pp.2787. ⟨10.1038/s41598-021-82395-x⟩
- Publication Year :
- 2021
- Publisher :
- HAL CCSD, 2021.
-
Abstract
- International audience; A conductive polymer (poly(p-phenylenevinylene), PPV) was covalently modified with Ru-II complexes to develop an all-polymer photocathode as a conceptual alternative to dye-sensitized NiO, which is the current state-of-the-art photocathode in solar fuels research. Photocathodes require efficient light-induced charge-transfer processes and we investigated these processes within our photocathodes using spectroscopic and spectro-electrochemical techniques. Ultrafast hole-injection dynamics in the polymer were investigated by transient absorption spectroscopy and charge transfer at the electrode-electrolyte interface was examined with chopped-light chronoamperometry. Light-induced hole injection from the photosensitizers into the PPV backbone was observed within 10 ps and the resulting charge-separated state (CSS) recombined within similar to 5 ns. This is comparable to CSS lifetimes of conventional NiO-photocathodes. Chopped-light chronoamperometry indicates enhanced charge-transfer at the electrode-electrolyte interface upon sensitization of the PPV with the Ru-II complexes and p-type behavior of the photocathode. The results presented here show that the polymer backbone behaves like classical molecularly sensitized NiO photocathodes and operates as a hole accepting semiconductor. This in turn demonstrates the feasibility of all-polymer photocathodes for application in solar energy conversion.
- Subjects :
- [CHIM.POLY]Chemical Sciences/Polymers
Subjects
Details
- Language :
- English
- ISSN :
- 20452322
- Database :
- OpenAIRE
- Journal :
- Scientific Reports, Scientific Reports, 2021, 11 (1), pp.2787. ⟨10.1038/s41598-021-82395-x⟩, Scientific Reports, Nature Publishing Group, 2021, 11 (1), pp.2787. ⟨10.1038/s41598-021-82395-x⟩
- Accession number :
- edsair.dedup.wf.001..73e629d5647e48fc66c9ca1049920818
- Full Text :
- https://doi.org/10.1038/s41598-021-82395-x⟩