Back to Search Start Over

Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples

Authors :
Gómez-González, Emilio
Fernández Muñoz, Beatriz
Barriga-Rivera, Alejandro
Universidad de Sevilla. Departamento de Física Aplicada III
Universidad de Sevilla. TEP203: Física Interdisciplinar, Fundamentos y Aplicaciones
Universidad de Sevilla. Departamento de Ingeniería Electrónica
Source :
idUS: Depósito de Investigación de la Universidad de Sevilla, Universidad de Sevilla (US), idUS. Depósito de Investigación de la Universidad de Sevilla, instname
Publication Year :
2021
Publisher :
Springer Nature, 2021.

Abstract

Optical spectroscopic techniques have been commonly used to detect the presence of biofilm-forming pathogens (bacteria and fungi) in the agro-food industry. Recently, near-infrared (NIR) spectroscopy revealed that it is also possible to detect the presence of viruses in animal and vegetal tissues. Here we report a platform based on visible and NIR (VNIR) hyperspectral imaging for non-contact, reagent free detection and quantification of laboratory-engineered viral particles in fluid samples (liquid droplets and dry residue) using both partial least square-discriminant analysis and artificial feed-forward neural networks. The detection was successfully achieved in preparations of phosphate buffered solution and artificial saliva, with an equivalent pixel volume of 4 nL and lowest concentration of 800 TU·μL−1. This method constitutes an innovative approach that could be potentially used at point of care for rapid mass screening of viral infectious diseases and monitoring of the SARS-CoV-2 pandemic. Instituto de Salud Carlos III COV20-00080 and COV20-00173 Ministerio de Ciencia e Innovación EQC2019-006240-P Comisión Europea JRC HUMAINT project

Details

Database :
OpenAIRE
Journal :
idUS: Depósito de Investigación de la Universidad de Sevilla, Universidad de Sevilla (US), idUS. Depósito de Investigación de la Universidad de Sevilla, instname
Accession number :
edsair.dedup.wf.001..729e5728093091f44f7eecc9bcd866cd