Back to Search
Start Over
A multi-dimensional trust-model for dynamic, scalable and resources-efficient trust-management in social internet of things
- Source :
- Artificial Intelligence [cs.AI]. Université Paul Sabatier-Toulouse III; Université de Sfax (Tunisie), 2020. English. ⟨NNT : 2020TOU30231⟩
- Publication Year :
- 2020
- Publisher :
- HAL CCSD, 2020.
-
Abstract
- The Internet of Things (IoT) is a paradigm that has made everyday objects intelligent by giving them the ability to connect to the Internet, communicate and interact. The integration of the social component in the IoT has given rise to the Social Internet of Things (SIoT), which has overcome various issues such as interoperability, navigability and resource/service discovery. In this type of environment, participants compete to offer a variety of attractive services. Some of them resort to malicious behavior to propagate poor quality services. They launch so-called Trust-Attacks (TA) and break the basic functionality of the system. Several works in the literature have addressed this problem and have proposed different trust-models. Most of them have attempted to adapt and reapply trust models designed for traditional social networks or peer-to-peer networks. Despite the similarities between these types of networks, SIoT ones have specific particularities. In SIoT, there are different types of entities that collaborate: humans, devices, and services. Devices can have very limited computing and storage capacities, and their number can be as high as a few million. The resulting network is complex and highly dynamic, and the impact of Trust-Attacks can be more compromising. In this work, we propose a Multidimensional, Dynamic, Resources-efficient and Scalable trust-model that is specifically designed for SIoT environments. We, first, propose features to describe the behavior of the three types of nodes involved in SIoT networks and to quantify the degree of trust according to the three resulting Trust-Dimensions. We propose, secondly, an aggregation method based on Supervised Machine-Learning and Deep Learning that allows, on the one hand, to aggregate the proposed features to obtain a trust score allowing to rank the nodes, but also to detect the different types of Trust-Attacks and to counter them. We then propose a hybrid propagation method that allows spreading trust values in the network, while overcoming the drawbacks of centralized and distributed methods. The proposed method ensures scalability and dynamism on the one hand, and minimizes resource consumption (computing and storage), on the other. Experiments applied to synthetic data have enabled us to validate the resilience and performance of the proposed model.<br />L'internet des Objets (IoT) est un paradigme qui a rendu les objets du quotidien, intelligents en leur offrant la possibilité de se connecter à Internet, de communiquer et d'interagir. L'intégration de la composante sociale dans l'IoT a donné naissance à l'Internet des Objets Social (SIoT), qui a permis de surmonter diverse problématiques telles que l'interopérabilité et la découverte de ressources. Dans ce type d'environnement, les participants rivalisent afin d'offrir une variété de services attrayants. Certains d'entre eux ont recours à des comportements malveillants afin de propager des services de mauvaise qualité. Ils lancent des attaques, dites de confiance, et brisent les fonctionnalités de base du système. Plusieurs travaux de la littérature ont abordé ce problème et ont proposé différents modèles de confiance. La majorité d'entre eux ont tenté de réappliquer des modèles de confiance conçus pour les réseaux sociaux ou les réseaux pair-à-pair. Malgré les similitudes entre ces types de réseaux, les réseaux SIoT présentent des particularités spécifiques. Dans les SIoT, nous avons différents types d'entités qui collaborent, à savoir des humains, des dispositifs et des services. Les dispositifs peuvent présenter des capacités de calcul et de stockage très limitées et leur nombre peut atteindre des millions. Le réseau qui en résulte est complexe et très dynamique et les répercussions des attaques de confiance peuvent être plus importantes. Nous proposons un nouveau modèle de confiance, multidimensionnel, dynamique et scalable, spécifiquement conçu pour les environnements SIoT. Nous proposons, en premier lieu, des facteurs permettant de décrire le comportement des trois types de nœuds impliqués dans les réseaux SIoT et de quantifier le degré de confiance selon les trois dimensions de confiance résultantes. Nous proposons, ensuite, une méthode d'agrégation basée sur l'apprentissage automatique et l'apprentissage profond qui permet d'une part d'agréger les facteurs proposés pour obtenir un score de confiance permettant de classer les nœuds, mais aussi de détecter les types d'attaques de confiance et de les contrer. Nous proposons, ensuite, une méthode de propagation hybride qui permet de diffuser les valeurs de confiance dans le réseau, tout en remédiant aux inconvénients des méthodes centralisée et distribuée. Cette méthode permet d'une part d'assurer la scalabilité et le dynamisme et d'autre part, de minimiser la consommation des ressources. Les expérimentations appliquées sur des de données synthétiques nous ont permis de valider le modèle proposé.
- Subjects :
- [INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]
Social Internet of Things
Gestion de la confiance
Social Networks
Internet des objets
Internet of Things
Internet des objets social
Trust-Attacks
Réseaux sociaux
Trust Management
Attaque de confiance
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Artificial Intelligence [cs.AI]. Université Paul Sabatier-Toulouse III; Université de Sfax (Tunisie), 2020. English. ⟨NNT : 2020TOU30231⟩
- Accession number :
- edsair.dedup.wf.001..6972af294c7199fa7717a297a55e89e0