Back to Search Start Over

Aplicação de machine learning no combate ao branqueamento de capitais e ao financiamento do terrorismo

Authors :
Gomes, Alexandre Miguel Gonçalves
Gaivão, José
Carvalho, João Paulo
Source :
Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP
Publication Year :
2019
Publisher :
Instituto Superior de Economia e Gestão, 2019.

Abstract

Mestrado em Métodos Quantitativos para a Decisão Económica e Empresarial Este trabalho resulta de um estágio desenvolvido na Empresa Quidgest, S.A. O trabalho final de mestrado versa sobre uma aplicação de Machine Learning na resolução da problemática de combate ao branqueamento de capitais e ao financiamento do terrorismo. Tal problema é conhecido como um caso de dados desbalanceados. Por conseguinte, a questão é abordada no decorrer do trabalho, apresentando várias formas de resolução. São ainda tratados os conceitos Machine Learning, Data Mining e Knowledge-Discovery in Databases. No âmbito do Machine Learning, o presente trabalho apenas se debruça sobre algoritmos supervisionados. Mais especificamente, os classificadores Random Forest, Adaboost e Boosting C5.0. Tais métodos foram aplicados sobre um repositório de dados que se encontravam alojados no sistema de gestão de base de dados Microsoft SQL Server. A investigação seguiu a metodologia CRISP-DM e teve a sua implementação no software R. This work results from an internship developed at Quidgest, S.A. This Master Final Work deals with an application of the Machine Learning in order to solve the problem of money laundering and the financing of terrorism. This problem is known as a case of unbalanced data. Therefore, the issue is addressed in the course of the work, presenting various forms of resolution. The concepts of Machine Learning, Data Mining and Knowledge-Discovery in Databases are also discussed. In Machine Learning, this paper only focuses on supervised algorithms. More specifically, the classifiers: Random Forest, Adaboost, and Boosting C5.0. These methods were applied to a data repository that was hosted in Microsoft SQL Server database management system. The research followed the CRISP-DM methodology and was implemented in the R software. info:eu-repo/semantics/publishedVersion

Details

Language :
Portuguese
Database :
OpenAIRE
Journal :
Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP
Accession number :
edsair.dedup.wf.001..677e3daef32be6e9eed97e267338a7f4