Back to Search
Start Over
Development of a probabilistic perception system for camera-lidar sensor fusion
- Publication Year :
- 2021
- Publisher :
- Universidad Autonoma de Occidente, 2021.
-
Abstract
- La estimación de profundidad usando diferentes sensores es uno de los desafíos clave para dotar a las máquinas autónomas de sólidas capacidades de percepción robótica. Ha habido un avance sobresaliente en el desarrollo de técnicas de estimación de profundidad unimodales basadas en cámaras monoculares, debido a su alta resolución o sensores LiDAR, debido a los datos geométricos precisos que proporcionan. Sin embargo, cada uno de ellos presenta inconvenientes inherentes, como la alta sensibilidad a los cambios en las condiciones de iluminación en el caso delas cámaras y la resolución limitada de los sensores LiDAR. La fusión de sensores se puede utilizar para combinar los méritos y compensar las desventajas de estos dos tipos de sensores. Sin embargo, los métodos de fusión actuales funcionan a un alto nivel. Procesan los flujos de datos de los sensores de forma independiente y combinan las estimaciones de alto nivel obtenidas para cada sensor. En este proyecto, abordamos el problema en un nivel bajo, fusionando los flujos de sensores sin procesar, obteniendo así estimaciones de profundidad que son densas y precisas, y pueden usarse como una fuente de datos multimodal unificada para problemas de estimación de nivel superior. Este trabajo propone un modelo de campo aleatorio condicional (CRF) con múltiples potenciales de geometría y apariencia que representa a la perfección el problema de estimar mapas de profundidad densos a partir de datos de cámara y LiDAR. El modelo se puede optimizar de manera eficiente utilizando el algoritmo Conjúgate Gradient Squared (CGS). El método propuesto se evalúa y compara utilizando el conjunto de datos proporcionado por KITTI Datset. Adicionalmente, se evalúa cualitativamente el modelo, usando datos adquiridos por el autor de esté trabajo Multi-modal depth estimation is one of the key challenges for endowing autonomous machines with robust robotic perception capabilities. There has been an outstanding advance in the development of uni-modal depth estimation techniques based on either monocular cameras, because of their rich resolution or LiDAR sensors due to the precise geometric data they provide. However, each of them suffers from some inherent drawbacks like high sensitivity to changes in illumination conditions in the case of cameras and limited resolution for the LiDARs. Sensor fusion can be used to combine the merits and compensate the downsides of these two kinds of sensors. Nevertheless, current fusion methods work at a high level. They processes sensor data streams independently and combine the high level estimates obtained for each sensor. In this thesis, I tackle the problem at a low level, fusing the raw sensor streams, thus obtaining depth estimates which are both dense and precise, and can be used as a unified multi-modal data source for higher level estimation problems. This work proposes a Conditional Random Field (CRF) model with multiple geometry and appearance potentials that seamlessly represents the problem of estimating dense depth maps from camera and LiDAR data. The model can be optimized efficiently using the Conjugate Gradient Squared (CGS) algorithm. The proposed method was evaluated and compared with the state-of-the-art using the commonly used KITTI benchmark dataset. In addition, the model is qualitatively evaluated using data acquired by the author of this work. Maestría Magíster en Ingeniería de Desarrollo de Productos
- Subjects :
- Signal processing
LiDAR
Sensor Fusion
Monocular Camera
Perception and Robot Operating System (ROS)
Multisensor data fusion
Sensor Fusion, LiDAR
Fusión de datos multisensor
Autómatas probabilísticos
Procesamiento de señales
Probabilistic automata
Maestría en Ingeniería de Desarrollo de Productos
Conditional Random Field (CRFs)
Probabilistic Graphical Model (PGM)
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.dedup.wf.001..66ad74b7db4e404ec9ad458b9e75d972