Back to Search Start Over

Using Wasserstein-2 regularization to ensure fair decisions with Neural-Network classifiers

Authors :
Risser, Laurent
Vincenot, Quentin
Couellan, Nicolas
Loubes, Jean-Michel
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Centre d'Etudes des Langues et Littératures Anciennes et Modernes (CELLAM)
Université de Rennes 2 (UR2)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)
Ecole Nationale de l'Aviation Civile (ENAC)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

In this paper, we propose a new method to build fair Neural-Network classifiers by using a constraint based on the Wasserstein distance. More specifically, we detail how to efficiently compute the gradients of Wasserstein-2 regularizers for Neural-Networks. The proposed strategy is then used to train Neural-Networks decision rules which favor fair predictions. Our method fully takes into account two specificities of Neural-Networks training: (1) The network parameters are indirectly learned based on automatic differentiation and on the loss gradients, and (2) batch training is the gold standard to approximate the parameter gradients, as it requires a reasonable amount of computations and it can efficiently explore the parameters space. Results are shown on synthetic data, as well as on the UCI Adult Income Dataset. Our method is shown to perform well compared with 'ZafarICWWW17' and linear-regression with Wasserstein-1 regularization, as in 'JiangUAI19', in particular when non-linear decision rules are required for accurate predictions.

Subjects

Subjects :
[MATH]Mathematics [math]

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.dedup.wf.001..661b7575ec91229284f149ddfca4436f