Back to Search Start Over

The Large Observatory for x-ray timing

Authors :
Feroci, M
Den Herder, JW
Bozzo, E
Barret, D
Brandt, S
Hernanz, M
Van Der Klis, M
Pohl, M
Santangelo, A
Stella, L
Watts, A
Wilms, J
Zane, S
Ahangarianabhari, M
Albertus, C
Alford, M
Alpar, A
Altamirano, D
Alvarez, L
Amati, L
Amoros, C
Andersson, N
Antonelli, A
Argan, A
Artigue, R
Artigues, B
Atteia, JL
Azzarello, P
Bakala, P
Baldazzi, G
Balman, S
Barbera, M
Van Baren, C
Bhattacharyya, S
Baykal, A
Belloni, T
Bernardini, F
Bertuccio, G
Bianchi, S
Bianchini, A
Binko, P
Blay, P
Bocchino, F
Bodin, P
Bombaci, I
Bonnet Bidaud, JM
Boutloukos, S
Bradley, L
Braga, J
Brown, E
Bucciantini, N
Burderi, L
Burgay, M
Bursa, M
Budtz-Jørgensen, C
Cackett, E
Cadoux, FR
Caïs, P
Caliandro, GA
Campana, R
Campana, S
Capitanio, F
Casares, J
Casella, P
Castro-Tirado, AJ
Cavazzuti, E
Cerda-Duran, P
Chakrabarty, D
Château, F
Chenevez, J
Coker, J
Cole, R
Collura, A
Cornelisse, R
Courvoisier, T
Cros, A
Cumming, A
Cusumano, G
D'ai, A
D'elia, V
Del Monte, E
De Luca, A
De Martino, D
Dercksen, JPC
De Pasquale, M
De Rosa, A
Del Santo, M
Di Cosimo, S
Diebold, S
Di Salvo, T
Donnarumma, I
Drago, A
Durant, M
Emmanoulopoulos, D
Erkut, MH
Esposito, P
Evangelista, Y
Fabian, A
Falanga, M
Favre, Y
Takahashi, Tadayuki
den Herder, Jan-Willem A
Bautz, Mark
Source :
Feroci, M; Den Herder, JW; Bozzo, E; Barret, D; Brandt, S; Hernanz, M; et al.(2014). The large observatory for x-ray timing. Proceedings of SPIE-The International Society for Optical Engineering, 9144. doi: 10.1117/12.2055913. UC Santa Cruz: Retrieved from: http://www.escholarship.org/uc/item/38476545
Publication Year :
2014
Publisher :
eScholarship, University of California, 2014.

Abstract

© 2014 SPIE. The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.

Details

Database :
OpenAIRE
Journal :
Feroci, M; Den Herder, JW; Bozzo, E; Barret, D; Brandt, S; Hernanz, M; et al.(2014). The large observatory for x-ray timing. Proceedings of SPIE-The International Society for Optical Engineering, 9144. doi: 10.1117/12.2055913. UC Santa Cruz: Retrieved from: http://www.escholarship.org/uc/item/38476545
Accession number :
edsair.dedup.wf.001..652de5a02baefed4db621251fc01c7dc
Full Text :
https://doi.org/10.1117/12.2055913.