Back to Search Start Over

On the Dimension of Unimodular Discrete Spaces, Part II: Relations with Growth Rate

Authors :
Baccelli, François
Haji-Mirsadeghi, Mir-Omid
Khezeli, Ali
Dynamics of Geometric Networks (DYOGENE)
Département d'informatique - ENS Paris (DI-ENS)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)
Sharif University of Technology [Tehran] (SUT)
Tarbiat Modares University [Tehran]
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Département d'informatique - ENS Paris (DI-ENS)
Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Tarbiat Modaras University
Département d'informatique de l'École normale supérieure (DI-ENS)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

The notions of unimodular Minkowski and Hausdorff dimensions are defined in [5] for unimodular random discrete metric spaces. The present paper is focused on the connections between these notions and the polynomial growth rate of the underlying space. It is shown that bounding the dimension is closely related to finding suitable equivariant weight functions (i.e., measures) on the underlying discrete space. The main results are unimodular versions of the mass distribution principle and Billingsley's lemma, which allow one to derive upper bounds on the unimodular Hausdorff dimension from the growth rate of suitable equivariant weight functions. Also, a unimodular version of Frostman's lemma is provided, which shows that the upper bound given by the unimodular Billingsley lemma is sharp. These results allow one to compute or bound both types of unimodular dimensions in a large set of examples in the theory of point processes, unimodular random graphs, and self-similarity. Further results of independent interest are also presented, like a version of the max-flow min-cut theorem for unimodular one-ended trees.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.dedup.wf.001..651b3a706c22ab3f37e44d19f5b67ebe