Back to Search Start Over

Nonconformity Measures and Ensemble Strategies : An Analysis of Conformal Predictor Efficiency and Validity

Authors :
Linusson, Henrik
Publication Year :
2021
Publisher :
Stockholms universitet, Institutionen för data- och systemvetenskap, 2021.

Abstract

Conformal predictors are a family of predictive models that associate with each of their predictions a measure of confidence, enabling them to provide quantitative information about their own trustworthiness. In risk-laden machine learning applications, where bad predictions may lead to economic loss, personal injury, or worse, such inherent quality control appears highly beneficial, if not required. While the foundations of conformal prediction were initially published some twenty years ago, their use, and further development, is still (at the time of writing this thesis) not widespread in the machine learning community, and several open questions remain regarding the proper design and use of conformal prediction systems. In this thesis, we attempt to tackle some of these questions, focusing our attention on three specific characteristics of conformal predictors. First, conformal predictors rely on so-called nonconformity functions, which are mappings from the object space onto the real line, typically based on traditional classification or regression models; here, we investigate properties of the underlying learning algorithm and characteristics of the resulting conformal predictor. Second, conformal predictors output predictions on a form that is distinct from traditional prediction methods, by supplying multi-valued prediction regions with a statistically valid coverage probability; we propose two procedures for post-processing the output from conformal classification models that provide interpretations more closely related to traditional predictive models, while still retaining meaningful confidence information. Finally, we provide contributions relating to the construction of conformal predictor ensembles, illustrating potential issues with existing ensemble procedures, as well as proposing and evaluating an alternative ensemble method. Avhandlingen behandlar områdetconformal prediction, som beskriver en fa-milj prediktiva modeller vars prediktioner associeras med ett konfidensmått,som låter modellerna själva uttrycka sig om sin egen tillförlitlighet. I hög-riskapplikationer, där dåliga prediktioner kan få allvarliga ekonomiska konse-kvenser, eller leda till personskada, tycks en sådan inbyggd säkerhetskontrollhögst värdefull, om inte nödvändig. Medan den teoretiska grunden till confor-mal prediction lades för cirka 20 år sedan, är forskningsområdet fortfaranderelativt ungt, och många öppna frågor kvarstår gällande design och använd-ning av conformal prediction-system. I avhandlingen behandlas några av des-sa öppna frågor, och fokus läggs på tre specifika karakteristika hos conformal-prediktorer. Först behandlas de så kallade icke-konformitetsfunktionerna (non-conformity functions) som ligger till grund för conformal prediction, och sam-bandet utforskas mellan egenskaper hos icke-konformitetsfunktionerna och deresulterande prediktorerna. även egenskaper hos de prediktioner som produ-ceras i en conformal predictor undersöks, och två post-processeringsmetoderpresenteras i ett försök att bistå med en mer intuitivt begriplig tolkning av des-sa prediktioner. Slutligen utforskas strategier för konstruktion av ensemblerav conformal prediction-modeller, där svagheter illustreras i vedertagna stra-tegier, följt av en presentation av en ny ensemblestrategi som ämnar adresseradessa svagheter.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.dedup.wf.001..647675842a442fb0ccfcc151e66db7b0