Back to Search Start Over

Predictive maintenance based on decentralized CPS and convolution’s neural network

Authors :
Dafflon, Baudouin
Bentaha, Mohand Lounes
Moalla, Néjib
Benbouriche, Alexandre
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon
Décision et Information pour les Systèmes de Production (DISP)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université Lumière - Lyon 2 (UL2)
Université Lumière - Lyon 2 (UL2)
UP INDUSTRY - TARDY SAS
MOALLA, Néjib
Source :
13ème Conférence Internationale de Modélisation, Optimisation et Simulation-MOSIM 2020, 13ème Conférence Internationale de Modélisation, Optimisation et Simulation-MOSIM 2020, Nov 2020, Agadir, Morocco
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; The massive ingest of non-intrusive sensors on manufacturing processes lifecycle allows to collect and monitor the health state of machines and serve maintenance programmes. In this research paper, we use machines’ monitoring data in a decentralised Cyber Physical System (CPS) architecture implementing Convolution’s Neural Network algorithms to influence the future behaviour of manufacturing equipment in a predictive maintenance perspective. This research contributes to extend the remaining useful life (RUL) of equipment and was implemented in an industrial use case supported by TARDY partner for the predictive maintenance of metal transformation machines.

Details

Language :
English
Database :
OpenAIRE
Journal :
13ème Conférence Internationale de Modélisation, Optimisation et Simulation-MOSIM 2020, 13ème Conférence Internationale de Modélisation, Optimisation et Simulation-MOSIM 2020, Nov 2020, Agadir, Morocco
Accession number :
edsair.dedup.wf.001..63b95b9b4bf5545a940064732b78a38d