Back to Search Start Over

Hierarchies of probabilistic models of space for mobile robots: the bayesian map and the abstraction operator

Authors :
Julien Diard
Pierre Bessière
Emmanuel Mazer
Geometry and Probability for Motion and Action (E-MOTION)
Laboratoire d'informatique GRAphique, VIsion et Robotique de Grenoble (GRAVIR - IMAG)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)
Source :
Proc. of the Workshop on Reasoning with Uncertainty in Robotics, Proc. of the Workshop on Reasoning with Uncertainty in Robotics, Aug 2003, Acapulco (MX), France, HAL
Publication Year :
2003
Publisher :
HAL CCSD, 2003.

Abstract

voir basilic : http://emotion.inrialpes.fr/bibemotion/2003/DBM03b/ address: Acapulco (MX); This paper presents a new method for probabilistic modelling of space, called the Bayesian Map for- malism. It offers a generalization of some com- mon approaches found in the literature, as it does not constrain the dependency structure of the prob- abilistic model. The formalism allows incremental building of hierarchies of models, by the use of the Abstraction Operator. In the resulting hierarchy, lo- calization in the high level model is based on prob- abilistic competition of the lower level models. Ex- perimental results validate the concept, and hint at its usefulness for large scale scenarios.

Details

Language :
English
Database :
OpenAIRE
Journal :
Proc. of the Workshop on Reasoning with Uncertainty in Robotics, Proc. of the Workshop on Reasoning with Uncertainty in Robotics, Aug 2003, Acapulco (MX), France, HAL
Accession number :
edsair.dedup.wf.001..5ff10fc3bde8852bb0dd79df6b27fe13