Back to Search Start Over

Learning Subgraph Patterns from text for Extracting Disease–Symptom Relationships

Authors :
Mohsen Hassan
Adrien Coulet
Yannick Toussaint
Knowledge representation, reasonning (ORPAILLEUR)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Peggy Cellier
Thierry Charnois
Andreas Hotho
Stan Matwin
Marie-Francine Moens
Yannick Toussaint
Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)
Coulet, Adrien
Source :
1st International Workshop on Interactions between Data Mining and Natural Language Processing, 1st International Workshop on Interactions between Data Mining and Natural Language Processing, Sep 2014, Nancy, France, HAL
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

International audience; To some extent, texts can be represented in the form of graphs, such as dependency graphs in which nodes represent words and edges represent grammatical dependencies between words. Graph representation of texts is an interesting alternative to string representation because it provides an additional level of abstraction over the syntax that is sometime easier to compute. In this paper, we study the use of graph mining methods on texts represented as dependency graphs, for extracting relationships between pairs of annotated entities. We propose a three step approach that includes (1) the transformation of texts in a collection of dependency graphs; (2) the selection of frequent subgraphs, named hereafter patterns, on the basis of positive sentences; and (3) the extraction of relationships by searching for occurrences of patterns in novel sentences. Our method has been experimented by extracting disease–symptom relationships from a corpus of 51,292 PubMed abstracts (428,491 sentences)related to 50 rare diseases. The extraction of correct disease–symptom relationships has been evaluated on 565 sentences, showing a precision of 0.91 and a recall of 0.49 (F-Meaure is 0.63). These preliminary experiments show the feasibility of extracting good quality relationships using frequent subgraph mining.

Details

Language :
English
Database :
OpenAIRE
Journal :
1st International Workshop on Interactions between Data Mining and Natural Language Processing, 1st International Workshop on Interactions between Data Mining and Natural Language Processing, Sep 2014, Nancy, France, HAL
Accession number :
edsair.dedup.wf.001..5f85c034ed08c52687b9d6c59d79ea2d