Back to Search Start Over

Learning Market Equilibria Using Performative Prediction: Balancing Efficiency and Privacy

Authors :
Taisant, Raphaël
Datar, Mandar
Le Cadre, Hélène
Altman, Eitan
Integrated Optimization with Complex Structure (INOCS)
Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université libre de Bruxelles (ULB)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Informatique d'Avignon (LIA)
Avignon Université (AU)-Centre d'Enseignement et de Recherche en Informatique - CERI
Network Engineering and Operations (NEO )
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Source :
ECC 2023-European Control Conference, ECC 2023-European Control Conference, Jun 2023, Bucharest, Romania
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

International audience; We consider a peer-to-peer electricity marketmodeled as a network game, where End Users (EUs) minimizetheir cost by computing their demand and generation whilesatisfying a set of local and coupling constraints. Their nominaldemand constitutes sensitive information, that they might wantto keep private. We prove that the network game admits aunique Variational Equilibrium, which depends on the privateinformation of all the EUs. A data aggregator is introduced,which aims to learn the EUs’ private information. The EUsmight have incentives to report biased and noisy readings topreserve their privacy, which creates shifts in their strategies.Relying on performative prediction, we define a decision-dependentgame G^stoch to couple the network game with adata market. Two variants of the Repeated Stochastic GradientMethod (RSGM) are proposed to compute the PerformativelyStable Equilibrium solution of G^stoch, that outperform RSGMwith respect to efficiency gap minimization, privacy preservation,and convergence rates in numerical simulations.

Details

Language :
English
Database :
OpenAIRE
Journal :
ECC 2023-European Control Conference, ECC 2023-European Control Conference, Jun 2023, Bucharest, Romania
Accession number :
edsair.dedup.wf.001..5bed1dc689b07995673f4d91c4897144