Back to Search
Start Over
Characteriation of Mediterranean Aleppo pine forest using low-density ALS data
- Source :
- Zaguán. Repositorio Digital de la Universidad de Zaragoza, instname, Zaguán: Repositorio Digital de la Universidad de Zaragoza, Universidad de Zaragoza
- Publication Year :
- 2021
- Publisher :
- Universidad de Zaragoza, Prensas de la Universidad, 2021.
-
Abstract
- Los espacios forestales son una fuente de servicios, tanto ambientales como económicos, de gran importancia para la sociedad. La caracterización de estos ambientes ha requerido tradicionalmente de un laborioso trabajo de campo. La aplicación de técnicas de teledetección ha proporcionado una visión más amplia a escala espacial y temporal, a la par que ha generado una reducción de los costes. La utilización de sensores óptico-pasivo multiespectrales y de sensores radar posibilita la estimación de parámetros forestales, si bien el desarrollo de sensores LiDAR, como el caso de los escáneres láser aeroportados (ALS), ha mejorado la caracterización tridimensional de la estructura de los bosques. La disponibilidad pública de dos coberturas LiDAR, generadas en el marco del Plan Nacional de Ortofotografía Aérea (PNOA), ha abierto nuevas líneas de investigación que permiten proporcionar información útil para la gestión forestal. La presente tesis utiliza datos LiDAR aeroportados de baja densidad para estimar diversas variables forestales, con ayuda de trabajo de campo, en masas forestales de Pino carrasco (Pinus halepensis Miller) en Aragón. La investigación aborda dos cuestiones relevantes como son la exploración de las metodologías más adecuadas para estimar variables forestales considerando escalas locales y regionales, teniendo en cuenta las posibles fuentes de error en el modelado; y, además, analiza la potencialidad de los datos LiDAR del PNOA para el desarrollo de aplicaciones forestales que valoricen las áreas forestales como recursos socio-económicos. La tesis se ha desarrollado según la modalidad de compendio de publicaciones, incluyendo cuatro trabajos que dan respuesta a los objetivos planteados. En primer lugar, se realiza un análisis comparativo de distintos modelos de regresión, paramétricos y no paramétricos, para estimar la pérdida de biomasa y las emisiones de CO2 en un incendio, mediante la utilización de datos LiDAR-PNOA y datos ópticos del satélite Landsat 8. En segundo lugar, se explora la idoneidad de distintos métodos de selección de variables para estimar biomasa total en masas de Pino carrasco utilizando datos LiDAR de baja densidad. En tercer lugar, se cuantificó y cartografió la biomasa residual forestal en el conjunto de masas de Pino carrasco de Aragón y se evaluó el efecto de diversas características de la tecnología LiDAR y de las variables ambientales en la precisión de los modelos. Finalmente, se analiza la transferibilidad temporal de modelos para estimar a escala regional siete variables forestales, utilizando datos LiDAR-PNOA multi-temporales. A este respecto, se compararon dos enfoques que permiten analizar la transferibilidad temporal: en primer lugar, el método directo ajusta un modelo para un determinado punto en el tiempo y estima las variables forestales para otra fecha; por otra parte, el método indirecto ajusta dos modelos diferentes para cada momento en el tiempo, estimando las variables forestales en dos fechas distintas. Los resultados obtenidos y las conclusiones derivadas de la investigación indican que la técnica basada en coeficientes de correlación de Spearman y el método de selección por todos los subconjuntos constituyen los métodos de selección de métricas LiDAR más apropiados para la modelización. El análisis de métodos de regresión para la estimación de variables forestales indicó que su idoneidad variaba de acuerdo con el tamaño y complejidad de la muestra. El método de regresión linear multivariante arrojó mejores resultados que los métodos no-paramétricos en el caso de muestras pequeñas. Por el contrario, el método Support Vector Machine produjo los mejores resultados con muestras grandes. El incremento de la densidad de puntos y de los valores de penetración de los pulsos LiDAR en el dosel, así como la presencia de ángulos de escaneo pequeños, incrementó la exactitud de los modelos. De forma similar, el incremento de la pendiente y la presencia de arbustos en el sotobosque implican una reducción en la exactitud de los modelos. En la estimación de variables forestales utilizando datos LiDAR multi-temporales, aunque la utilización del enfoque indirecto arrojó generalmente una mayor precisión en los modelos, se obtuvieron resultados similares con el enfoque directo, el cual constituye una alternativa óptima para reducir el tiempo de modelado y los costes de realización de trabajo de campo. La fusión de datos LiDAR y datos óptico-pasivos ha evidenciado la conveniencia de los métodos aplicados para cuantificar las emisiones de CO2 a la atmósfera generadas por un incendio. Esta metodología constituye una alternativa adecuada cuando no existen datos multi-temporales LiDAR. La estimación de variables de inventario forestal, así como de diversas fracciones de biomasa, como la biomasa total y la biomasa residual forestal, proporciona información valiosa para caracterizar las masas forestales mediterráneas de Pino carrasco y mejorar la gestión forestal Forest ecosystems provide environmental and economic services of great importance to the society. The characterization of these environments has been traditionally accomplished with intense field work. In comparison, the application of remote sensing tools provides a greater overview over large spatial and temporal scales while minimizing costs. Although optical data and Synthetic Aperture Radar (SAR) allow estimating forest stand variables, the development of LiDAR sensors such as Airborne Laser Scanner (ALS) have improved three-dimensional characterization of forest structure. The availability of two ALS public data coverages for the Spanish territory, provided by the National Plan for Aerial Ortophotography (PNOA), opens new research opportunities to generate useful information for forest management. This PhD Thesis used low-density ALS-PNOA data to estimate different forest variables, with support in fieldwork, in the Aleppo pine (Pinus halepensis Miller) forests of Aragón region. The addressed research is relevant mainly for two reasons: first, the examination of suitable methodologies and error sources in forest stand variables prediction at local (small area) and regional scales (large area), and second, the application of ALS data to the characterization of forest areas as a socio-economic reservoir. This PhD Thesis is a compendium of four scientific papers, which sequentially answer the objectives established. Firstly, a comparative analysis of different parametric and non-parametric models was performed to estimate biomass losses and CO2 emissions using low-density ALS and Landsat 8 data in a burnt Aleppo pine forest. Secondly, we assess the suitability of variable selection methods when estimating total biomass in Aleppo pine forest stands using low-density ALS data. In the third manuscript, the quantification and mapping of forest residual biomass in Aleppo pine forest of Aragón region and the assessment of the effect of ALS and environmental variables in model accuracy were accomplished. Finally, the temporal transferability of seven forest stands attributes modelling using multi-temporal ALS-PNOA data in Aleppo pine forest at regional scale was explored. In this case, the temporal transferability was assessed comparing two methodologies; the direct and indirect approach. The first one fits a model for one point in time and estimates the forest variable for another point in time. The indirect approach adjusts two models in different points in time to estimate the forest variables in two different dates. The results derived from this research indicated that Spearman’s rank and All Subset Selection are the most appropriate methods in the ALS metrics selection step commonly applied in modelling. The suitability of the regression methods depends on the sample size and complexity. Thus, multivariate linear regression outperformed non-parametric methods with small samples while support vector machine was the most accurate method with larger samples. Model accuracy increased with higher point density and canopy pulse penetration, while decreasing with wider scan angles. Furthermore, the presence of steep slopes and shrub reduced model performance. In the case of forest stand variables prediction using multi-temporal ALS data, although the indirect approach produced generally a higher precision, the direct approach provided similar results, constituting a suitable alternative to reduce modelling time and fieldwork costs. The fusion of ALS and passive optical data have evidenced the suitability of this information for quantifying wildfire CO2 emissions to atmosphere, constituting a good alternative when multi-temporal ALS data is not available. The estimation of forest inventory variables as well as different biomass fractions, such as total biomass and forest residual biomass, provided valuable information to characterize Mediterranean Aleppo pine forests and improve forest management.
- Subjects :
- incendios forestales
productos forestales
teledeteccion
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Zaguán. Repositorio Digital de la Universidad de Zaragoza, instname, Zaguán: Repositorio Digital de la Universidad de Zaragoza, Universidad de Zaragoza
- Accession number :
- edsair.dedup.wf.001..56569339dc7f486efe956a1a9bcef216