Back to Search Start Over

A large-scale evaluation of computational protein function prediction

Authors :
Radivojac, Predrag
Clark, Wyatt T
Oron, Tal Ronnen
Schnoes, Alexandra M
Wittkop, Tobias
Sokolov, Artem
Graim, Kiley
Funk, Christopher
Verspoor, Karin
Ben-Hur, Asa
Pandey, Gaurav
Yunes, Jeffrey M
Talwalkar, Ameet S
Repo, Susanna
Souza, Michael L
Piovesan, Damiano
Casadio, Rita
Wang, Zheng
Cheng, Jianlin
Fang, Hai
Gough, Julian
Koskinen, Patrik
Törönen, Petri
Nokso-Koivisto, Jussi
Holm, Liisa
Cozzetto, Domenico
Buchan, Daniel WA
Bryson, Kevin
Jones, David T
Limaye, Bhakti
Inamdar, Harshal
Datta, Avik
Manjari, Sunitha K
Joshi, Rajendra
Chitale, Meghana
Kihara, Daisuke
Lisewski, Andreas M
Erdin, Serkan
Venner, Eric
Lichtarge, Olivier
Rentzsch, Robert
Yang, Haixuan
Romero, Alfonso E
Bhat, Prajwal
Paccanaro, Alberto
Hamp, Tobias
Kaßner, Rebecca
Seemayer, Stefan
Vicedo, Esmeralda
Schaefer, Christian
Achten, Dominik
Auer, Florian
Boehm, Ariane
Braun, Tatjana
Hecht, Maximilian
Heron, Mark
Hönigschmid, Peter
Hopf, Thomas A
Kaufmann, Stefanie
Kiening, Michael
Krompass, Denis
Landerer, Cedric
Mahlich, Yannick
Roos, Manfred
Björne, Jari
Salakoski, Tapio
Wong, Andrew
Shatkay, Hagit
Gatzmann, Fanny
Sommer, Ingolf
Wass, Mark N
Sternberg, Michael JE
Škunca, Nives
Supek, Fran
Bošnjak, Matko
Panov, Panče
Džeroski, Sašo
Šmuc, Tomislav
Kourmpetis, Yiannis AI
van Dijk, Aalt DJ
ter Braak, Cajo JF
Zhou, Yuanpeng
Gong, Qingtian
Dong, Xinran
Tian, Weidong
Falda, Marco
Fontana, Paolo
Lavezzo, Enrico
Di Camillo, Barbara
Toppo, Stefano
Lan, Liang
Djuric, Nemanja
Guo, Yuhong
Vucetic, Slobodan
Bairoch, Amos
Linial, Michal
Babbitt, Patricia C
Brenner, Steven E
Orengo, Christine
Rost, Burkhard
Source :
Nature methods, vol 10, iss 3
Publication Year :
2013
Publisher :
eScholarship, University of California, 2013.

Abstract

Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based critical assessment of protein function annotation (CAFA) experiment. Fifty-four methods representing the state of the art for protein function prediction were evaluated on a target set of 866 proteins from 11 organisms. Two findings stand out: (i) today's best protein function prediction algorithms substantially outperform widely used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is considerable need for improvement of currently available tools.

Details

Database :
OpenAIRE
Journal :
Nature methods, vol 10, iss 3
Accession number :
edsair.dedup.wf.001..4f97cbc72b61030caff5fd3b0d90cf6d