Back to Search Start Over

Enzymatic mineralization of hydrogels for bone tissue engineering by incorporation of alkaline phosphatase

Authors :
Douglas, T.E.L.
Messersmith, P.B.
Chasan, S.
Mikos, A.G.
Mulder, E.L.W. de
Dickson, G.
Schaubroeck, D.
Balcaen, L.
Vanhaecke, F.
Dubruel, P.
Jansen, J.A.
Leeuwenburgh, S.C.G.
Source :
Macromolecular Bioscience, 12, 8, pp. 1077-89, Macromolecular Bioscience, 12, 1077-89
Publication Year :
2012

Abstract

Item does not contain fulltext Alkaline phosphatase (ALP), an enzyme involved in mineralization of bone, is incorporated into three hydrogel biomaterials to induce their mineralization with calcium phosphate (CaP). These are collagen type I, a mussel-protein-inspired adhesive consisting of PEG substituted with catechol groups, cPEG, and the PEG/fumaric acid copolymer OPF. After incubation in Ca-GP solution, FTIR, EDS, SEM, XRD, SAED, ICP-OES, and von Kossa staining confirm CaP formation. The amount of mineral formed decreases in the order cPEG > collagen > OPF. The mineral:polymer ratio decreases in the order collagen > cPEG > OPF. Mineralization increases Young's modulus, most profoundly for cPEG. Such enzymatically mineralized hydrogel/CaP composites may find application as bone regeneration materials. 01 augustus 2012

Details

ISSN :
16165187
Volume :
12
Database :
OpenAIRE
Journal :
Macromolecular Bioscience
Accession number :
edsair.dedup.wf.001..4767b0d4006e8351e35efc130e755123
Full Text :
https://doi.org/10.1002/mabi.201100501