Back to Search Start Over

Probabilistic forecasting of the wind energy resource at the monthly to seasonal scale

Authors :
Alonzo, Bastien
Drobinski, Philippe
Plougonven, Riwal
Tankov, Peter
Laboratoire de Probabilités et Modèles Aléatoires (LPMA)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC)
Laboratoire de Météorologie Dynamique (UMR 8539) (LMD)
Département des Géosciences - ENS Paris
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)
École Nationale de la Statistique et de l'Administration Économique (ENSAE Paris)
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

We build and evaluate a probabilistic model designed for forecasting the distribution of the daily mean wind speed at the seasonal timescale in France. On such long-term timescales, the variability of the surface wind speed is strongly influenced by the atmosphere large-scale situation. Our aim is to predict the daily mean wind speed distribution at a specific location using the information on the atmosphere large-scale situation, summarized by an index. To this end, we estimate, over 20 years of daily data, the conditional probability density function of the wind speed given the index. We next use the ECMWF seasonal forecast ensemble to predict the atmosphere large-scale situation and the index at the seasonal timescale. We show that the model is sharper than the climatology at the monthly horizon, even if it displays a strong loss of precision after 15 days. Using a statistical postprocessing method to recalibrate the ensemble forecast leads to further improvement of our probabilistic forecast, which then remains sharper than the climatology at the seasonal horizon.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.dedup.wf.001..410f5c4b5d63bdf568d6896ee5cc8225