Back to Search Start Over

Well-Approximable Points for Julia Sets with Parabolic and Critical Points

Authors :
Stratmann, Bernd O.
Urbanski, Mariusz
Zinsmeister, Michel
Laboratoire Mapmo, Direction Du
Mathematical Institute
University of St Andrews [Scotland]-Mathematical Institute
Department of Mathematics and Statistics [Texas Tech]
Texas Tech University [Lubbock] (TTU)
Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO)
Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)
Source :
Computational Methods and Function Theory, Computational Methods and Function Theory, Springer, 2001, Vol 1, pp.89-97
Publication Year :
2001
Publisher :
HAL CCSD, 2001.

Abstract

In this paper we consider rational functions $f\colon \oc \to \oc$ with parabolic and critical points contained in their Julia sets $J(f)$ such that $$ \sum_{n=1}^\infty|(f^n)'(f(c))|^{-1}0 $$ and which are well-approximable by backward iterates of the parabolic periodic points of $f$.

Details

Language :
English
ISSN :
16179447 and 21953724
Database :
OpenAIRE
Journal :
Computational Methods and Function Theory, Computational Methods and Function Theory, Springer, 2001, Vol 1, pp.89-97
Accession number :
edsair.dedup.wf.001..405ecb2676eaeb88c1eb6cacd33a32db